Effect of alloying elements on hydrogen diffusion in austenitic stainless steel, Carbon Dissimilar Joints
Subject Areas : Information Technology in Engineering Design (ITED) JournalOmid Ghani 1 , Ebrahim Heshmat Kordi 2
1 - M.Sc. Materials Engineering, Department of Materials Engineering, Najafabad Branch
2 - M.Sc. Materials Engineering, Department of Materials Engineering, Najafabad Branch
Keywords:
Abstract :
Diffusion of hydrogen in metals and alloys is effects on material behavior such as loss in mechanical properties. In this work to evaluated the effect of alloying elements on the several chemical composition of the cladding aisi 347 with hydrogen was studied. For this purpose a piece of carbon steel St37 was prepared and cladding with filler metal with two different chemical compound 347 stainless steel. In this regard, a non-hazardous electrochemical charging method to hydrogen charge the specimens. Mechanical properties and Microstructure of the specimens were studied by means of micro hardness testing, tensile strength, toughness, optical microscopy and microanalysis techniques (EDS). Results indicate that both overlay werewithout any defects in the interfaces. Also the results of the cladding samples showed the presence of elements such as Cr, Mn, Ti, Nb can reduce hydrogen permeation and diffusion, while Ni probability can increase permeation and hydrogen embrittlement.
[1] P. Fassina, A. Sciuccati, Influence of hydrogen and low temperature on mechanical behavior of two pipeline steels, Engineering Fracture Mechanics Journal, Vol.81, 2012, Pp. 43-55.
[2] J. Luc Delplancke, Ph.D. Thesis, University of Bruxelle, 2006.
[3] A. Sciuccati, Ph.D. Thesis, University of Milan, 2011.
[4] P. K. Ghosh, P. C. Gupta, Stainless Steel Cladding of Structural Steel Plate Using the Pulsed Current Gmaw Process, Welding Journal, 1998, Pp. 307-314.
[5] N. Venkateswara Rao, Weld Overlay Cladding of High Strength Low Alloy Steel With Austenitic Stainless Steel – Structure and Properties, Materials and Design Journal, Vol.32, 2011, Pp. 2496-2506.
[6] Lancaster, J.F., Metallurgy of Welding, 6th Ed., 1999, Abington Publishing.
[7] T. Zakroczymski, Effect of hydrogen concentration on the embrittlement of a duplex stainless steel, Corrosion Science Journal, Vol.47, 2005, Pp. 1403-1414.
[8] Standard Method for Mechanical Testing of Welds, AWS, B4.0, 1992.
[9] D. Hardie, J. Xu, Hydrogen Embrittlement of Stainless Steel Overlay Materials for Hydrogenators, Corrosion Science Journal, Vol.46, 2004, Pp. 3089-3100.
[10] M.I. Luppo, J. Ovejero Garcia, Effects of Delta Ferrite on Hydrogen Embrittlement of Austenitic Stainless Steel Welds, Corrosion Science Journal,Vol.41, 2000, Pp. 87-103.
[11] R. Sudhakaran, V. Murugan, "Modeling and analysis of Ferrite number of Stainless steel gas tungsten arc welded plates using response surface Methodology", Int J Adv Manuf Technol, doi 10.1007/s00170-012-4117-0, 2011.
[12] N. Murugan, R. Parmar, "Effect of Welding Conditions on Microstructure and Properties of type 316L Stainless steel Submerged Arc Cladding". Welding Research, pp. 192-198, 1997.
]13[ ع. اشکذری، ا. دهقان، "مقایسه خواص مکانیکی اتصال غیرهمجنس A516Gr.70-AISI 316 ایجاد شده با الکترودهای E309L و E316L"، دومین همایش مشترک انجمن متالورژی و جامعه ریختهگران ایران، ص 10-1، تهران، 1386.
[14] N. Venkateswara Rao, "Weld Overlay Cladding of High Strength Low Alloy Steel With Austenitic Stainless Steel – Structure and Properties", Materials and Design Journal, Vol. 32, pp. 2496-2506, 2011.
[15] Y. Pan, T.G.Gooch, "Research on Overlaying Welding rod of High hardness Maraging Steel", China Surfac Engineering, Vol. 19(3), pp. 9-16, 2006.
[16] ASME, "Qualification standard for welding and brazing procedures, welders, brazers and welding and brazing operators", ASME Boilers and Pressure Vessel Code, Sec. IX, 2001.
[17] C. Jang, S. Kang, " The Effects of the Stainless Steel Cladding in Pressurized Thermal Shock Evaluation", Nuclear Engineering and Design Journal, Vol. 226, pp. 127-140, 2003.
]18[ ح. فرهنگی، س. عابدی، " تأثیر هیدروژن بر رفتار مکانیکی و مکانیزم شکستهای شکست در فولاد کمکربن Mo1- Cr 25/2" نشریه، دانشکده فنی دانشگاه تهران، شماره 4، ص 581-571، 1381.
[19] C. Pan, Y.J. Su, "Hydrogen Embrittlement of Weld Metal of Austenitic Stainless steels", Corrosion Science Journal, Vol. 44, pp. 1983-1993, 2002.
[20] F. Matsuda, Disbonding Between 1/4 Cr- 1 Mo Steel and Overlaid austenitic stainless steel By Means of Electrolytic Hydrogen Charging Techniqu, Trans JWRI, Vol 13, 1984, Pp. 263-272.
[21] U. Caligulu, M. Taskin, "Microstructural Characteristic of Dissimilar Welded Components (AISI 430 Ferritic-AISI 304 Austenitic Stainless Steels) by CO2 Laser Beam Welding (LBW)", Gazi University Journal of Science, Vol. 25 (1), pp. 35-51, 2012.
[22] S. Ningshen, M. Uhlemann, "Diffusion behavior of Hydrogen in Nitrogen Containing Austenitic Alloys", Corrosion Science Journal, Vol. 43, pp 2255-2264, 2001.
[23] T. Tanabe, Y. Yamanishi, "Hydrogen Transport in Stainless Steels", Journal of Nuclear Materials, Vol. 123, pp. 1568-1572, 1984.
_||_