The new Implicit Finite Difference Method for the Solution of Time Fractional Advection-Dispersion Equation
Subject Areas : Applied MathematicsHamid Reza Khodabandehloo 1 , Elyas Shivanian 2 , Sh. Mostafaee 3
1 - Department of Mathematics, Payame Noor University (PNU),45771-13878,
Qeydar, Zanjan, Iran
2 - Department of Mathematics, Imam Khomeini International University,
Qazvin, Iran
3 - Department of Mathematics, Imam Khomeini International University,
Qazvin, Iran
Keywords:
Abstract :
[1]Goreno R., Mainardi F., Scalas E., Raberto M., Fractional calculus and
continuous-time nance. III, The diusion limit. Mathematical nance
(Konstanz, 2000), Trends in Math., Birkhuser, Basel, 2001, pp. 171-180.
[2]Lubich C., Discretized fractional calculus, SIAM J. Math. Anal.17 (1986)
704719.13.
[3]Meerschaert M. M. , Tadjeran C ., Finite dierence approximations for
fractional advection - diusion ow equations, J.comput. Appl. Numer.
Math.172 (2004) 6577.
[4]Podlubny I., Fractional Dierential Equations, Academic Press, New York,
1999.
[5]Samko S., Kilbas A., Marichev O., Fractional Integrals and Derivatives:
Theory and Applications, Gordon and Breach, London, 1993.
[6]Oldham K.B., Spanier J., The Fractional Calculus, Academic Press, New
York, 1974.
[7]Tadjeran C., Meerschaert M. M., H.P. Scheer, A second-order accurate
numerical approximation for the fractional diusion equation, J. Comput.
Phys. 213 (2006) 205-213.
[8]Miller K., Ross B., An Introduction to the Fractional Calculus and
Fractional Dierential, Wiley, New York, 1993.
[9]zhang Y., A Finite dierence method for fractional partial dierential
equation, Appl. Math. comput. 215 (2009) 524-529.