Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method
Subject Areas : Engineering
1 - Civil Engineering Department, Yasouj University, Yasouj, Iran
2 - Civil Engineering Department, Yasouj University, Yasouj, Iran
Keywords:
Abstract :
[1] Reddy J.N., Phan N.D., 1985, Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory, Journal of Sound and Vibration 98(2): 157-170.
[2] Xiang Y., Wei G.W., 2004, Exact solutions for buckling and vibration of stepped rectangular Mindlin plates, International Journal of Solids and Structures 41: 279-294.
[3] Hosseini-Hashemi Sh., Arsanjani M., 2005, Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates, International Journal of Solids and Structures 42: 819-853.
[4] Hosseini-Hashemi Sh., Fadaee M., Eshaghi M., 2010, A novel approach for in-plane/out-of-plane frequency analysis of functionally graded circular/annular plates, International Journal of Mechanical Sciences 52: 1025-1035.
[5] Hosseini-Hashemi Sh., Rokni Damavandi Taher H., Akhavan H., Omidi M., 2010, Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory, Applied Mathematical Modelling 34: 1276-1291.
[6] Hosseini-Hashemi Sh., Fadaee M., Atashipour, S.A., 2011, A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates, International Journal of Mechanical Sciences 53: 11-22.
[7] Hosseini-Hashemi Sh., Fadaee M., Atashipour S.A., 2011, Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure, Composite Structure 93: 722-735.
[8] Hosseini-Hashemi Sh., Fadaee M., Rokni Damavandi Taher H., 2011, Exact solutions for free flexural vibration of Lévy-type rectangular thick plates via third-order shear deformation plate theory, Applied Mathematical Modelling 35: 708-727.
[9] Akhavan H., Hosseini-Hashemi Sh., Rokni Damavandi Taher H., Alibeigloo A., Vahabi Sh., 2009, Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: frequency analysis, Computational Materials Science 44: 951-961.
[10] Hatami S., Azhari M., Saadatpour M.M., 2007, Free vibration of moving laminated composite plates, Composite Structures 80: 609-620.
[11] Hatami S., Ronagh H.R., Azhari M., 2008, Exact free vibration analysis of axially moving viscoelastic plates, Computers and Structures 86: 1738-1746.
[12] Boscolo M., Banerjee J.R., 2011, Dynamic stiffness elements and their applications for plates using first order shear deformation theory, Computers and Structures 89: 395-410.
[13] Boscolo M., Banerjee J.R., 2012, Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part I: Theory, Computers and Structures 96-97: 61-73.
[14] Boscolo M., Banerjee J.R., 2012, Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part II: Results and application, Computers and Structures 96-97: 74-83.
[15] Leung A.Y.T., Zhou W.E., 1996, Dynamic stiffness analysis of laminated composite plates, Thin-Walled Structures 25(2): 109-133.
[16] Fazzolari F.A., Boscolo M., Banerjee J.R., 2013, An exact dynamic stiffness element using a higher order shear deformation theory for free vibration analysis of composite plate assemblies, Composite Structures 96: 262-278.
[17] Kolarevic N., Nefovska-Danilovic M., Petronijevic M., 2015, Dynamic stiffness elements for free vibration analysis of rectangular Mindlin plate assemblies, Journal of Sound and Vibration 359: 84-106.
[18] Kolarevic N., Marjanovic M., Nefovska-Danilovic M., Petronijevic M., 2016, Free vibration analysis of plate assemblies using the dynamic stiffness method based on the higher order shear deformation theory, Journal of Sound and Vibration 364: 110-132.
[19] Ghorbel O., Casimir J.B., Hammami L., Tawfiq I., Haddar M., 2015, Dynamic stiffness formulation for free orthotropic plates, Journal of Sound and Vibration 346: 361-375.
[20] Ghorbel O., Casimir J.B., Hammami L., Tawfiq I., Haddar M., 2016, In-plane dynamic stiffness matrix for a free orthotropic plate, Journal of Sound and Vibration 364: 234-246.
[21] Doyle J.F., 1997, Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, Springer-Verlag, New York, Second Edition.
[22] Lee U., Lee J., 1998, Vibration analysis of the plates subject to distributed dynamic loads by using spectral element method, KSME International Journal 12(4): 565-571.
[23] Kim J., Cho J., Lee U., Park, S., 2003, Modal spectral element formulation for axially moving plates subjected to in-plane axial tension, Computers and Structures 81: 2011-2020.
[24] Chakraborty A., Gopalakrishnan S., 2005, A spectrally formulated plate element for wave propagation analysis in anisotropic material, Computer Methods in Applied Mechanics and Engineering 194: 4425-4446.
[25] Kwon K., Lee U., 2006, Spectral element modeling and analysis of an axially moving thermo elastic beam-plate, Journal of Mechanics of Materials and Structures 1: 605-632.
[26] Wang G., Unal A., 2013, Free vibration of stepped thickness rectangular plates using spectral finite element method, Journal of Sound and Vibration 332: 4324-4338.
[27] Hajheidari H., Mirdamadi H.R., 2012, Free and transient vibration analysis of an un-symmetric cross-ply laminated plate by spectral finite elements, Acta Mechanica 223: 2477-2492.
[28] Hajheidari H., Mirdamadi H.R., 2013, Frequency-dependent vibration analysis of symmetric cross-ply laminated plate of Levy-type by spectral element and finite strip procedures, Applied Mathematical Modelling 37: 7193-7205.
[29] Liu X., Banerjee J.R., 2015, An exact spectral-dynamic stiffness method for free flexural vibration analysis of orthotropic composite plate assemblies. Part I: Theory, Composite Structures 132: 1274-1287.
[30] Liu X., Banerjee J.R., 2015,An exact spectral-dynamic stiffness method for free flexural vibration analysis of orthotropic composite plate assemblies . Part II: Applications, Composite Structures 132: 1288-1302.
[31] Liu X., Banerjee J.R., 2016, Free vibration analysis for plates with arbitrary boundary conditions using a novel spectral-dynamic stiffness method, Computers & Structures 164: 108-126.
[32] Park I., Lee U., 2015, Spectral element modeling and analysis of the transverse vibration of a laminated composite plate, Composite Structures 134: 905-917.
[33] Shirmohammadi F., Bahrami S., Saadatpour M.M., Esmaeily A., 2015, Modeling wave propagation in moderately thick rectangular plates using the spectral element method, Applied Mathematical Modelling 39(12): 3481-3495.
[34] Bahrami S., Shirmohammadi F., Saadatpour M.M., 2015, Modeling wave propagation in annular sector plates using spectral strip method, Applied Mathematical Modelling 39(21): 6517-6528.
[35] Reddy J.N., 2007, Theory and Analysis of Elastic Plates and Shells, CRC Press, Boca Raton, Second Edition.
[36] Reissner, E., 1944, On the theory of bending of elastic plates, Journal Math Physics 23(4): 184-191.
[37] Lee U., 2009, Spectral Element Method in Structural Dynamics, John Wiley & Sons.
[38] Szilard R., 2004, Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods, John wiley & Sons, Inc, New Jersey.