Predicting Depth and Path of Subsurface Crack Propagation at Gear Tooth Flank under Cyclic Contact Loading
Subject Areas : EngineeringH Heirani 1 , Kh Farhangdoost 2
1 - Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2 - Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Keywords:
Abstract :
[1] Boresi A.P., Schmidt R.J., Sidebottom O.M., 1993, Advanced Mechanics of Materials, John wiley & sons, Hoboken.
[2] Spitas V., Spitas C., 2007, Numerical and experimental comparative study of strength-optimised AGMA and FZG spurgears, Acta Mechanica 193: 113-126.
[3] Spitas C., Spitas V., Amani A., Rajabalinejad M., 2014, Parametric investigation of the combined effect of whole depth and cutter tip radius on the bending strength of 20◦ involute gear teeth, Acta Mechanica 225: 361-371.
[4] Ding Y., Rieger N.F., 2003, Spalling formation mechanism for gears, Wear 254: 1307-1317.
[5] Way S., 1935, Pitting due to rolling contact, Journal of Applied Mechanics, Transactions of ASME 57: A49-A58.
[6] Sraml M., Flasker J., Potrc I., 2003, Numerical procedure for predicting the rolling contact fatigue crack initiation, International Journal of Fatigue 25: 585-595.
[7] Sraml M., Flasker J., 2007, Computational approach to contact fatigue damage initiation analysis of gear teeth flanks, International Journal of Advanced Manufacturing Technology 31: 1066-1075.
[8] Alfredsson B., Dahlberg J., Olsson M., 2008, The role of a single surface asperity in rolling contact fatigue, Wear 264: 757-762.
[9] Ding Y., Gear J.A., 2009, Spalling depth prediction model, Wear 267: 1181-1190.
[10] Beheshti A., Khonsari M.M., 2011, On the prediction of fatigue crack initiation in rolling/sliding contacts with provision for loading sequence effect, Tribology International 44: 1620-1628.
[11] Moorthy V., Shaw B.A.,2013, An observation on the initiation of micro-pitting damage in as-ground and coated gears during contact fatigue, Wear 297: 878-884.
[12] Glodez S., Winter H., Stuwe H.P., 1997, A fracture mechanics model for the wear of gear flanks by pitting, Wear 208: 177-183.
[13] Glodez S., Ren Z., 1998, Modelling of crack growth under cyclic contact loading, Theoretical and Applied Fracture Mechanics 30: 159-173.
[14] Flasker J., Fajdiga G., Glodez S., Hellen T.K., 2001, Numerical simulation of surface pitting due to contact loading, International Journal of Fatigue 23: 599-605.
[15] Ren Z., Glodez S., Fajdiga G., Ulbin M., 2002, Surface initiated crack growth simulation in moving lubricated contact, Theoretical and Applied Fracture Mechanics 38: 141-149.
[16] Aslantas K., Tasgetiren S., 2004, A study of spur gear pitting formation and life prediction, Wear 257: 1167-1175.
[17] Glodez S., Abersek B., Flasker J., Ren Z., 2004, Evaluation of the service life of gears in regard to surface pitting, Engineering Fracture Mechanics 71: 429-438.
[18] Fajdiga G., Flasker J., Glodez S., 2004, The influence of different parameters on surface pitting of contacting mechanical elements, Engineering Fracture Mechanics 71: 747-758.
[19] Jurenka J., Spaniel M., 2014, Advanced FE model for simulation of pitting crack growth, Advances in Engineering Software 72: 218-225.
[20] Glodez S., Ren Z., Flasker J., 1998, Simulation of surface pitting due to contact loading, International Journal for Numerical Methods in Engineering 43: 33-50.
[21] Fajdiga G., Glodez Kramar, J., 2007, Pitting formation due to surface and subsurface initiated fatigue crack growth in contacting mechanical elements, Wear 262: 1217-1224.
[22] Fajdiga G., Sraml M., 2009, Fatigue crack initiation and propagation under cyclic contact loading, Engineering Fracture Mechanics 76: 1320-1335.
[23] Hannes D., Alfredsson B., 2013, Modelling of surface initiated rolling contact fatigue damage, Procedia Engineering 66: 766-774.
[24] Hannes D., Alfredsson B., 2012, Surface initiated rolling contact fatigue based on the asperity point load mechanism - A parameter study, Wear 294: 457-468.
[25] Davis J.R., 2005, Gear Materials, Properties, and Manufacture, ASM International, First Edition.
[26] Asi O., 2006, Fatigue failure of a helical gear in a gearbox, Engineering Failure Analysis 13: 1116-1125.
[27] Moorthy V., Shaw B.A., 2012, Contact fatigue performance of helical gears with surface coatings, Wear 276-277: 130-140.
[28] Budynas R.G., Nisbett J.K., 2011, Shigley's Mechanical Engineering Design, McGraw-Hill, New York.
[29] Abaqus/CAE User’s Manual, Version 6.12, 2012.
[30] Rebbechi B., Oswald F.B., Townsend D.P., 1996, Measurement of gear tooth dynamic friction, NASA Technical Report ARL-TR-1165.
[31] Bomidi J.A.R., Sadeghi F., 2014, Three-demensional finite element elastic-plastic model for subsurface initiated spalling in rolling contacts, Journal of Tribology 136: 011402-0114011.
[32] Juvinall R.C., Marshek K.M., 2012, Fundamentals of Machine Component Design, John wiley & sons, Hoboken.
[33] Johnson K.L., 1985, Contact Mechanics, Cambridge University Press, Cambridge.
[34] Richard H.A., Fulland M., Sander M., 2005, Theoretical crack path prediction, Fatigue & Fracture of Engineering Materials & Structures 28: 3-12.
[35] Erdogan F., Sih G.C., 1963, On the crack extension in plates under plane loading and transverse shear, Journal of Basic Engineering 85: 519-525.
[36] Hertzberg R.W., 1996, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, New Jersey.
[37] Tanaka K., 1974, Fatigue crack propagation from a crack inclined to the cyclic tensile axis, Engineering Fracture Mechanics 6: 493-507.