Edge Crack Studies in Rotating FGM Disks
Subject Areas : Engineering
1 - Abadan Institute of Technology, Petroleum University of Technology, Abadan
Keywords:
Abstract :
[1] Kurihara K., Sasaki K., Kawarada M., 1990, Adhesion improvement of diamond films, Proceedings of the First International Symposium on Functionally Gradient Materials, Tokyo.
[2] Lee Y. D., Erdogan F., 1995, Residual/thermal stresses in FGM and laminated thermal barrier coatings, International Journal of Fracture 69(2): 145-165.
[3] Erdogan F., 1995, Fracture mechanics of functionally graded materials, Composites Part B: Engineering 5(7): 753-770.
[4] Kim J. H., Paulino G.H., 2002, Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials, Journal of Applied Mechanics 69(4): 502-514.
[5] Kim J. H., Paulino G. H., 2002, Finite element evaluation of mixed mode stress intensity factors in functionally graded materials, International Journal for Numerical Methods in Engineering 53: 1903-1935.
[6] Rooke D. P., Tweed J., 1973, The stress intensity factor of an edge crack in a finite rotating elastic disc, International Journal of Engineering Science 11: 279-283.
[7] Isida M., 1981, Rotating disk containing an internal crack located at an arbitrary position, Engineering Fracture Mechanics 14: 549-555.
[8] Chen W. H., Lin T. C., 1983, A mixed-mode crack analysis of rotating disk using finite element method, Engineering Structures 18(1): 133-143.
[9] Cho J. R., Park H. J., 2002, High strength FGM cutting tools: finite element analysis on thermoelastic characteristics, Journal of Materials Processing Technology 130: 351-356.
[10] Zenkour A. M., 2009, Stress distribution in rotating composite structures of functionally graded solid disks, Journal of Materials Processing Technology 209: 3511-3517.
[11] Afsar A.M., Go J., 2010, Finite element analysis of thermoelastic field in a rotating FGM circular disk, Applied Mathematical Modelling 34: 3309-3320.
[12] Hosseini Tehrani P., Talebi M., 2012, Stress and temperature distribution study in a functionally graded brake disk, International Journal of Automotive Engineering 2(3): 172-179.
[13] Eskandari H., 2014, Stress intensity factors for crack located at an arbitrary position in rotating FGM disks, Jordan Journal of Mechanical and Industrial Engineering 8(1): 27-34.
[14] Eskandari H., 2014, Stress intensity factor for radial cracks in rotating hollow FGM disks, Composites: Mechanics, Computations, Applications: An International Journal 5(3): 207-217.
[15] Walters M. C., Paulino G. H., Dodds R. H., 2004, Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading, International Journal of Solids and Structures 41: 1081-1118.
[16] Nami M.R., Eskandari H., 2012, Three-dimensional investigations of stress intensity factors in a thermo-mechanically loaded cracked FGM hollow cylinder , International Journal of Pressure Vessels and Piping 89: 222-229.
[17] Kim J. H., 2003, Mixed-mode crack propagation in functionally graded materials, Ph.D. Thesis, University of Illinoisat Urbana-Champaign, Illinois.
[18] Williams M. L., 1957, On the stress distribution at the base of a stationary crack, Journal of Applied Mechanics 24: 109 -114.
[19] Eischen J. W., 1987, Fracture of non-homogeneous materials, International Journal of Fracture 34: 3-22.
[20] Jin Z. H., Noda N., 1994, Crack tip singular fields in non-homogeneous materials, Journal of Applied Mechanics 61(3): 738-740.
[21] Zhang C., Cui M., Wang J., Gao X. W. , Sladek J., Sladek V., 2010, 3D crack analysis in functionally graded materials, Engineering Fracture Mechanics 78: 585-604.
[22] Erdogan F., Wu B. H., 1997, The surface crack problem for a plate with functionally graded properties, Journal of Applied Mechanics 64: 449-456.
[23] Chen J., Wu L., Du S., 2000, A modified J integral for functionally graded materials, Mechanics Research Communications 27(3): 301-306.