Crack Interaction Studies Using XFEM Technique
Subject Areas : Engineering
1 - Reactor Safety Divison, Bhabha Atomic Research Centre, Trombay, Mumbai
Keywords:
Abstract :
[1] Belytschko T., Black T., 1999, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering 45: 601-620.
[2] Melenk J. M., Babuska I., 1996, The partition of unity finite element method: basic theory and applications, Computer Methods in Applied Mechanics and Engineering 139: 289-314.
[3] Babuska I., Melenk J. M., 1997, The partition of unity method, International Journal for Numerical Methods in Engineering 40: 727-758.
[4] Fleming M., Chu Y. A., Moran B., Belytschko T., 1997, Enriched element-free Galerkin methods for crack-tip fields, International Journal for Numerical Methods in Engineering 40 : 1483-1504.
[5] Moës N., Dolbow J., Belytschko T., 1999, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering 46: 131-150.
[6] Daux C., Moës N., Dolbow J., Sukumar N., Belytschko T., 2000, Arbitrary branched and intersecting cracks with the extended finite element method, International Journal for Numerical Methods in Engineering 48: 1741-1760.
[7] Sukumar N., Moës N., Moran B., Belytschko T., 2000, Extended finite element method for three-dimensional crack modelling, International Journal for Numerical Methods in Engineering 48: 1549-1570.
[8] Dolbow J., Moës N., Belytschko T., 2000, Modelling fracture in Mindlin–Reissner plates with the extended finite element method, International Journal of Solids and Structures 37: 7161-7183.
[9] Dolbow J., Moës N., Belytschko T., 2001, An extended finite element method for modeling crack growth with frictional contact, Computer Methods in Applied Mechanics and Engineering 190: 6825-6846.
[10] Areias P., Belytschko T., 2005, Analysis of three-dimensional crack initiation and propagation using exteneded finite element method, International Journal for Numerical Methods in Engineering 63: 760-788.
[11] Nagashima T., Omoto Y., Tani S., 2003, Stress intensity factor analysis of interface cracks using X-FEM, International Journal of Numerical Methods in Engineering 56: 1151-1173.
[12] Liu X. Y., Xiao Q. Z., Karihaloo B. L., 2004, XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials, International Journal of Numerical Methods in Engineering 59: 1113-1118.
[13] Sukumar N., Chopp D. , Moes N., Belytschko T., 2001, Modelling holes and inclusions by level sets in the extended finite element method, Computer Methods in Applied Mechanics and Engineering 190: 6183-6200.
[14] Alves M., Rossi R., 2003, A modidied element-free galerkin method with essential boundary conditions enforced by an extended partition of unity finite element weight function, International Journal for Numerical Methods in Engineering 57 : 1523-1552.
[15] Sukumar N., Prévost J. H., 2003, Modelling quasi-static crack growth with the extended finite element method Part I: Computer implementation, International Journal of Solids and Structures 40: 7513-7537.
[16] Huang R., Sukumar N., Prévost J. H. , 2003, Modeling quasi-static crack growth with the extended finite element method Part II: Numerical applications, International Journal of Solids and Structures 40: 7539-7552.
[17] Zi G., Belytschko T., 2003, New crack-tip elements for XFEM and applications to cohesive cracks, International Journal for Numerical Methods in Engineering 57: 2221-2240.
[18] Mergheim J., Kuhl E., Steinmann P., 2005, A finite element method for the computational modelling of cohesive cracks, International Journal for Numerical Methods in Engineering 63: 276-289.
[19] Sukumar N., Huang Z. Y., Prévost J. H., Suo Z., 2004, Partition of unity enrichment for bimaterial interface cracks, International Journal for Numerical Methods in Engineering 59: 1075-1102.