On the Analysis of FGM Beams: FEM with Innovative Element
Subject Areas : EngineeringM Zakeri 1 , A Modarakar Haghighi 2 , R Attarnejad 3
1 - School of Civil Engineering, College of Engineering, University of Tehran
2 - School of Civil Engineering, College of Engineering, University of Tehran----Centre of Numerical Methods in Engineering, University of Tehran
3 - School of Civil Engineering, College of Engineering, University of Tehran
Keywords:
Abstract :
[1] Chakraborty A., Gopalakrishnan S., Reddy J.N., 2003, A new beam finite element for the analysis of functionally graded materials, International Journal of Mechanical Sciences 45(3): 519-539.
[2] Carrera E., Brischetto S., Robaldo A., 2008, Variable kinematic model for the analysis of functionally graded material plates, AIAA Journal 46(1): 194-203.
[3] Giunta G., Belouettar S., Carrera E., 2010, Analysis of FGM beams by means of classical and advanced theories, Mechanics of Advanced Materials and Structures 17(8): 622-635.
[4] Şimşek M., 2010, Vibration analysis of a functionally graded beam under a moving mass by using different beam theories, Composite Structures 92(4): 904-917.
[5] Elishakoff I., Becquet R., 2000, Closed-form solutions for natural frequencies for inhomogeneous beams with one sliding support and the other clamped, Journal of Sound and Vibration 238: 540-546.
[6] Calio I., Elishakoff I., 2005, Closed-form solutions for axially graded beam-columns, Journal of Sound and Vibration 280: 1083-1094.
[7] Bequet R., Elishakoff I., 2001, Class of analytical closed-form polynomial solutions for clamped-guided inhomogeneous beams, Chaos, Solitons & Fractals 12: 1657-1678.
[8] Calio I., Elishakoff I., 2004, Closed-form trigonometric solutions for inhomogeneous beam-columns on elastic foundation, International Journal of Structural Stability and Dynamics 4(1):139-146.
[9] Elishakoff I., Candan S., 2001, Apparently first closed-form solution for vibrating inhomogeneous beams, International Journal of Solids and Structures 38(19): 3411-3441.
[10] Calio I., Elishakoff I., 2004, Can a trigonometric function serve both as the vibration and the buckling mode of an axially graded structure, Mechanics Based Design of Structures and Machines 32(4): 401-421.
[11] Elishakoff I., 2001, Inverse buckling problem for inhomogeneous columns, International Journal of Solids and Structures 38(3):457-464.
[12] Elishakoff I., Becquet R., 2000, Closed-form solutions for natural frequencies for inhomogeneous beams with one sliding support and the other pinned, Journal of Sound and Vibration 238: 529-553.
[13] Becquet R., Elishakoff I., 2001, Class of analytical closed-form polynomial solutions for guided-pinned inhomogeneous beams, Chaos, Solitons & Fractals 12(8): 1509-1534.
[14] Guede Z., Elishakoff I., 2001, Apparently the first closed-form solution for inhomogeneous vibrating beams under axial loading, Proceedings of the Royal Society A 457(2007): 623-649.
[15] Elishakoff I., Guede Z., 2001, A remarkable nature of the effect of boundary conditions on closed-form solutions for vibrating inhomogeneous Euler-Bernoulli beams, Chaos, Solitons & Fractals 12: 659-704.
[16] Elishakoff I., 2001, Euler’s problem revisited: 222 years later, Meccanica 36: 265-272.
[17] Elishakoff I., Guede Z., 2001, Novel closed-form solutions in buckling of inhomogeneous columns under distributed variable loading, Chaos, Solitons & Fractals 12(6): 1075-1089.
[18] Elishakoff I., Johnson V., 2005, Apparently the first closed-form solution of vibrating inhomogeneous beam with a tip mass, Journal of Sound and Vibration 286: 1057-1066.
[19] Elishakoff I., Pentaras D., 2006, Apparently the first closed-form solution of inhomogeneous elastically restrained vibrating beams, Journal of Sound and Vibration 298(1-2): 439-445.
[20] Wu L., Wang Q.S., Elishakoff I., 2005, Semi-inverse for axially functionally graded beams with an anti-symmetric vibration mode, Journal of Sound and Vibration 284(3-5): 1190-1202.
[21] Elishakoff I., Perez A., 2005, Design of a polynomially inhomogeneous bar with a tip mass for specied mode shape and natural frequency, Journal of Sound and Vibration 287(4-5): 1004-1012.
[22] Elishakoff I., 2001, Some unexpected results in vibration of nonhomogeneous beams on elastic foundation, Chaos, Solitons & Fractals 12(12): 2177-2218.
[23] Guede Z., Elishakoff I., 2001, A fifth-order polynomial that serves as both buckling and vibration mode of an inhomogeneous structure, Chaos, Solitons & Fractals 12(7): 1267-1298.
[24] Elishakoff I., Guede Z., 2004, Analytical polynomial solutions for vibrating axially graded beams, Mechanics of Advanced Materials and Structures 11(6): 517-533.
[25] Huang Y., Li X.F.A., 2010, New approach for free vibration of axially functionally graded beams with non-uniform cross-section, Journal of Sound and Vibration 329(11): 2291-2303.
[26] Alshorbagy A.E., Eltaher M.A., Mahmoud F.F., 2011, Free vibration characteristics of a functionally graded beam by finite element method, Applied Mathematical Modelling 35(1): 412-425.
[27] Singh K.V., Li G., 2009, Buckling of functionally graded and elastically restrained non-uniform columns, Composites Part B 40(5): 393-403.
[28] Shahba A., Rajasekaran S., 2012, Free vibration and stability of tapered Euler–Bernoulli beams made of axially functionally graded materials, Applied Mathematical Modelling 36(7): 3094-3111.
[29] Shahba A., Attarnejad R., Hajilar S., 2013, A mechanical-based solution for axially functionally graded tapered euler-bernoulli beams, Mechanics of Advanced Materials and Structures 20: 696-707.
[30] Zarrinzadeh H., Attarnejad R., Shahba A., 2012, Free vibration of rotating axially functionally graded tapered beams, Proceedings of The Institution of Mechanical Engineers Part G-journal of Aerospace Engineering 226: 363-379.
[31] Shahba A., Attarnejad R., Zarrinzadeh H., 2013, Free Vibration Analysis of Centrifugally Stiffened Tapered Functionally Graded Beams, Mechanics of Advanced Materials and Structures 20(5): 331-338.
[32] Shahba A., Attarnejad R., TavanaieMarvi M., Hajilar S., 2011, Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions, Composites Part B 42(4): 801-808.
[33] Shahba A., Attarnejad R., Hajilara S., 2011, Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams, Shock and Vibration 18(5): 683-696.
[34] Attarnejad R., 2010, Basic displacement functions in analysis of nonprismatic beams, Engineering with Computers 27(6): 733-745.