Stress Analysis of Two-directional FGM Moderately Thick Constrained Circular Plates with Non-uniform Load and Substrate Stiffness Distributions
Subject Areas : Engineering
1 - Faculty of Mechanical Engineering, K.N. Toosi University of Technology
2 - Faculty of Mechanical Engineering, K.N. Toosi University of Technology
Keywords:
Abstract :
[1] Reddy J.N., Wang C.M., Kitipornchai S., 1999, Axisymmetric bending of functionally graded circular and annular plates, European Journal of Mechanics A/Solids 18: 185-199.
[2] Ma L.S., Wang T.J., 2004, Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory, International Journal of Solids and Structures 41: 85-101.
[3] Saidi A.R., Rasouli A., Sahraee S., 2009, Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory, Composite Structures 89: 110-119.
[4] Sahraee S., Saidi A.R., 2009, Axisymmetric bending analysis of thick functionally graded circular plates using fourth-order shear deformation theory, European Journal of Mechanics A/Solids 28: 974-984.
[5] Jomehzadeh E., Saidi A.R., Atashipour S.R., 2009, An analytical approach for stress analysis of functionally graded annular sector plates, Materials and Design 30: 3679-3685.
[6] Golmakani M.E., Kadkhodayan M., 2011, Nonlinear bending analysis of annular FGM plates using higher-order shear deformation plate theories, Composite Structures 93: 973-982.
[7] Nie G., Zhong Z., 2007, Axisymmetric bending of two-directional functionally graded circular and annular plates, Acta Mechanica Solida Sinica 20: 289-295.
[8] Li X.Y., Ding H.J., Chen W.Q., 2008, Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qrk, International Journal of Solids and Structures 45: 191-210.
[9] Li X.Y., Ding H.J., Chen W.Q., 2008, Three-dimensional analytical solution for functionally graded magneto–electro-elastic circular plates subjected to uniform load, Composite Structures 83: 381-390.
[10] Yang B., Ding H.J., Chen W.Q., 2008, Elasticity solutions for a uniformly loaded annular plate of functionally graded materials, Structural Engineering and Mechanics 30(4): 501-512.
[11] Lei Z., Zheng Z., 2009, Exact solution for axisymmetric bending of functionally graded circular plate, Tsinghua Science and Technology 14: 64-68.
[12] Wang Y., Xu R.Q., Ding H.J., 2010, Three-dimensional solution of axisymmetric bending of functionally graded circular plates, Composite Structures 92: 1683-1693.
[13] Nie G.J., Zhong Z., 2010, Dynamic analysis of multi-directional functionally graded annular plates, Applied Mathematical Modelingl. 34(3): 608-616.
[14] Sepahi O., Forouzan M.R., Malekzadeh P., 2010, Large deflection analysis of thermo-mechanical loaded annular FGM plates on nonlinear elastic foundation via DQM, Composite Structures 92(10): 2369-2378.
[15] Sburlati R., Bardella L., 2010, Three-dimensional elastic solutions for functionally graded circular plates, European Journal of Mechanics A/Solids 2011, dx.doi.org/10.1016/j.euromechsol.2010.12.008.
[16] Shariyat M., Alipour M.M., 2011, Differential transform vibration and modal stress analyses of circular plates made of two-directional functionally graded materials, resting on elastic foundations, Archive of Applied Mechanics 81: 1289-1306.
[17] Alipour M.M., Shariyat M., Shaban M., 2010, A semi-analytical solution for free vibration of variable thickness two-directional-functionally graded plates on elastic foundations, International Journal of Mechanics and Materials in Design 6(4): 293-304.
[18] Reddy J.N., 2007, Theory and Analysis of Elastic Plates and shells, Second Edition, CRC/Taylor and Francis, Philadelphia.
[19] Shen, H.-S., 2009, Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press, Taylor and Francis Group, Boca Raton.
[20] Ugural A.C., Fenster S.K, 2003, Advanced Strength and Applied Elasticity, Forth Edition, Prentice Hall, New Jersey.
[21] Reddy J.N., Wang C.M., Kitipornchai S., 1999, Axisymmetric bending of functionally graded circular and annular plates, European Journal of Mechanics A/Solids 18: 185-199.
[22] Nosier A., Fallah F., 2008, Reformulation of Mindlin–Reissner governing equations of functionally graded circular plates, Acta Mechanica 198: 209-233.
[23] Shariyat M., 2011, Non-linear dynamic thermo-mechanical buckling analysis of the imperfect laminated and sandwich cylindrical shells based on a global-local theory inherently suitable for non-linear analyses, International Journal of Non-Linear Mechanics46(1):253-271.
[24] Shariyat M., 2011, A double-superposition global-local theory for vibration and dynamic buckling analyses of viscoelastic composite/sandwich plates: A complex modulus approach, Archive of Applied Mechanics81: 1253-1268.
[25] Lezgy-Nazargah M., Shariyat M., Beheshti-Aval S.B., 2011, A refined high-order global-local theory for finite element bending and vibration analyses of the laminated composite beams, Acta Mechanica217: 219-242.
[26] Lezgy-Nazargah M., Beheshti-Aval S.B., Shariyat M., 2011, A refined mixed global-local finite element model for bending analysis of multi-layered rectangular composite beams with small widths, Thin-Walled Structures49: 351-362.
[27] Hosseini S.M., Sladek J., Sladek V., 2011, Meshless local Petrov–Galerkin method for coupled thermoelasticity analysis of afunctionally graded thick hollow cylinder, Engineering Analysis with Boundary Elements. 35: 827-835.