Analysis of the Fracture of a Turbine Blade
Subject Areas : EngineeringA.R Shourangiz Haghighi 1 , S Rahmanian 2 , A Shamsabadi 3 , A zare 4 , I Zare 5
1 - Department of Mechanical Engineering, Jahrom University
2 - Department of Mechanical Engineering, Jahrom University
3 - College of Engineering, Shiraz Branch, Islamic Azad University
4 - Department of Mechanical Engineering, Shiraz University
5 - College of Engineering, Shiraz Branch, Islamic Azad University
Keywords:
Abstract :
[1] Lucjan W., 2006, Failure analysis of turbine disc of an aero engine, Engineering Failure Analysis 13: 9-17.
[2] Chan S.K., Tuba I.S., 1971, A finite element method for contact problems of solid bodies–Part II: Applications to turbine blade fastenings, International Journal of Mechanical Sciences 13: 627-639.
[3] Masataka M., 1992, Root and groove contact analysis for steam turbine blades, The Japan Society of Mechanical Engineers 35:508-514.
[4] Meguid S.A., Kanth P.S., Czekanski A., 2000, Finite element analysis of fir-tree region in turbine disc, Finite Elements in Analysis and Design 35:305-317.
[5] Papanikos P., Meguid S.A., Stjepanovic Z., 1998, Three-dimensional nonlinear finite element analysis of dovetail joints in aero-engine discs, Finite Elements in Analysis and Design 29:173-186.
[6] Zboinski G.,1995, Physical and geometrical non-linearities in contact problems of elastic turbine blade attachments, International Journal of Mechanical Sciences 209: 273-286.
[7] McEvily A., 2004, Failures in inspection procedures: case studies, Engineering Failure Analysis 11:167-176.
[8] Hou J., Wicks B.J., Antoniou R.A., 2002, An investigations of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis, Engineering Failure Analysis 9:201-211.
[9] Bhaumik S.K., 2002, Failure of turbine rotor blisk of an aircraft engine, Engineering Failure Analysis 9: 287-301.
[10] Park M., Hwang Y., Choi Y., Kim T., 2002, Analysis of a J69-T-25 engine turbine blade fracture, Engineering Failure Analysis 9: 593-601.
[11] Treager I., 1995, Aircraft Gas Turbine Engine Technology, McGraw Hill.
[12] Kyo-Soo S., Seon-Gab K., Daehan J., Young-Ha H., 2007, Analysis of the fracture of a turbine blade on a turbojet engine, Engineering Failure Analysis 14 : 877-883.
[13] Backman D. G., Mourer D. P., Bain K. R., Walston W. S., 2003, AIM- A new methodology for developing disk materials, Advanced Materials and Processes for Gas Turbines .
[14] Murakumo T., Kobayashi T., Koizumi Y., Harada H., 2004, Creep behavior of ni-base single-crystal super-alloys withvarious gamma volume fraction, Acta Materialia 52 (12): 3737-3744.
[15] Karunarante M. S. A., Reed R. C., 2003, Interdiffusion of platinum- group metals in nickel at elevated temperatures, Acta Materialia 51(10): 2905-2914.
[16] Reed R. C., Karunarantne M. S. A., 2000, Interdiffusion in the face- centered cubic phase of Ni-Re, Ni-Ta and Ni-W systems between 900◦C and 1300◦C, Materials Science and Engineering A 281(1–2): 229-233.
[17] WalstonW. S., Cetel A., MacKay R., O’Hara K., Duhl D., Dreshfield R., 2004, Joint development of a fourth generation single crystal super-alloys, Super-Alloys 2004:15-24.
[18] Tanaka R., 2008, Research and development of ultra-high temperature materials in japan, Materials at High Temperatures 26(4): 457-464.
[19] Pollock T. M., Argon A. S., 1992, Creep resistance of CMSX-3 nickel base super-alloys single crystals, Acta Metallurgia et Materialia 40(6):1-30.
[20] McLean M., Dyson B. F., 2010, Modeling the effects of damage and microstructural evolution on the creep behavior of engineering alloys, Journal of Engineering Materials and Technology 131:273-278.
[21] Pollock T. M., Field R. D., 2012, Dislocations and high temperature plastic deformation of super-alloys single crystals, Dislocations in Solids 2012:549-618.
[22] ASM Handbook, ASM International 2: 951.
[23] Meetham G.W.,1996, Contribution of materials to the development of the gas turbine engine, Metall Mater Technology 1996: 589-602.
[24] Pollock T. M., Field R. D., 2002, Dislocations and high temperature plastic deformation of super-alloy single crystals, Dislocations in Solids 11: 549-618.
[25] Rae C.M.F., Cox D.C., Rist M.A., Reed R.C., Matan N.C., 2000, On the primary creep of CMSX-4 super-alloy single crystals, Metallurgical and Materials Transactions A 31(9): 2219-2228.
[26] Muller L., Glatzel U., Feller-Kniepmeier M., 1992, Modelling thermal misfit stresses in nickel-base super-alloys containing high volume fraction of gamma’ phase, Acta Metallurgia ET Materialia 40: 1321-1327.
[27] Schneider M. C., Gu J. P., Beckermann C., Boettinger W. J., Kattner U. R., 1997, Modeling of micro- and macros-egregation and freckle formation in single crystal nickel-base super-alloys during directional solidification, Metallurgical Transactions A 28(7):1517-1531.
[28] Auburtin P., Cockcroft S. L., Mitchell A., 1996, Freckle formation in super-alloys, Super-alloys 1996: 443-450.
[29] Miner R.V., Gayada J., Maier R.D., 1982, Fatigue and creep fatigue deformation of several nickel-base super-alloys at 650◦C, Metallurgical Transactions A 13(10):1755-1765.
[30] McLean M., Dyson B. F., 2000, Modeling the effects of damage and microstructural evolution on the creep behavior of engineering alloys, Journal of Engineering Materials and Technology 131: 273-278.
[31] Carter Tim J., 2005, Common failures in gas turbine blade, Engineering Failure Analysis 12: 237-247.
[32] ASM Handbook, ASM International 28:50.
[33] Mercer C., Shademn S., Soboyejo W.O.,2003, An investigation of the micro-mechanisms of fatigue crack growth in structural gas turbine engine alloy, Journal of Materials Science 38:291-305.
[34] Luo J., Bowen P., 2004, Small and long fatigue crack growth behavior of a PM Ni-based super-alloy, International Journal of Fatigue 26:113-124.
[35] Jiang L., Brooks C.R., Liaw P.K., Klarstrom D.L., Rawn C.J., Muenchen B., 2001, Phenomenological aspects of the high-cycle fatigue of ULTIMET alloy, Materials Science and Engineering 316:66-79.
[36] Neal D.F., Blenkinsop P.A., 1976, Internal fatigue origins in a–b titanium alloys, Acta Metallurgica 24: 59-63.
[37] Boyd-Lee A.D., 1999, Fatigue crack growth resistant microstructures in polycrystalline Ni-base super-alloys for aeroengines, International Journal of Fatigue 21:393-405.
[38] MSC-Patran User’s Manual, 2009, MSC Corporation, Los Angeles.
[39] Park M., Hwang Y., Choi Y., Kim T., 2002, Analysis of a J69-T-25 engine turbine blade fracture, Engineering Failure Analysis 9: 593-601.
[40] Pollock T.M., Tin S., 2006, Nickel-based supe-ralloys for advanced turbine engines: chemistry, microstructure, and properties , Journal of Propulsion and Power 22(2): 361-374.
[41] Khurana S., Navte J., Singh H., 2012, Effect of cavitation on hydraulic turbines – a review, International Journal of Current Engineering and Technology 2: 172 -177.
[42] Momcilvic D., Odanovic Z., Mitrovic R., Atanasovska I., Vuherer T., 2012, Failure analysis of hydraulic turbine shaft, Engineering Failure Analysis 29: 54-66.
[43] Momcilovic D., Motrovic R., Antanasovska I., Vuherer T., 2012, Methodology of determination the influence of corrosion pit on the decrease of hydro turbine shaft fatigue failure, Machine Design 4(4): 231 - 236.
[44] Neopane H.P., 2010, Sediment Erosion in Hydro Turbines, Faculty of Engineering Science and Technology, Fluid Engineering, Norway.
[45] Belash I., 2010, Causes of the failure of the no. 2 hydraulic generating set at the Sayano-Shushenskaya HPP: criticality of reliability enhancement for waterpower equipment, Power Technology and Engineering 44(3):165-170.
[46] Ferreño D., Álvarez J.A., Ruiz E., Méndez D., Rodríguez L., Hernández D., 2011, Failure analysis of a Pelton turbine manufactured in soft martensitic stainless steel casting, Engineering Failure Analysis 18(1):256-270.
[47] Egusquiza E., Valero C., Estévez A., Guardo A., Coussirat M., 2011, Failures due to ingested bodies in hydraulic turbines, Engineering Failure Analysis 18(1): 464-473.
[48] Luo Y., Wang Z., Zeng J., Lin J., 2010, Fatigue of piston rod caused by unsteady, unbalanced, unsynchronized blade torques in a Kaplan turbine, Engineering Failure Analysis 17(1):192-199.