A Rapidly Convergent Nonlinear Transfinite Element Procedure for Transient Thermoelastic Analysis of Temperature-Dependent Functionally Graded Cylinders
Subject Areas : Engineering
1 - Faculty of Mechanical Engineering, K.N.T. University of Technology
Keywords:
Abstract :
[1] Noda N., 1991, Thermal stresses in materials with temperature-dependent properties, ASME Applied Mechanics Review 44: 83-97.
[2] Tanigawa Y., 1995, Some basic thermoelastic problems for non-homogeneous structural materials, ASME Applied Mechanics Review 48: 287-300.
[3] Zimmerman R.W., Lutz M.P., 1999, Thermal stress and thermal expansion in a uniformly heated functionally graded cylinder, Journal of Thermal Stresses 22: 88-177.
[4] Obata Y., Noda N., 1994, Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally gradient material, Journal of Thermal Stresses 17: 471-487.
[5] El-abbasi N., Meguid S.A., 2000, Finite element modeling of the thermoelastic behavior of functionally graded plates and shells, International Journal of Computational Engineering Science 1: 51-165.
[6] Jabbari M., Sohrabpour, S. Eslami M.R., 2001, Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads, International Journal of Pressure Vessels and Piping 79: 493-497.
[7] Liew K.M., Kitipornchai S., Zhang X.Z., Lim C.W., 2003, Analysis of the thermal stress behavior of functionally graded hollow circular cylinders, International Journal of Solids and Structures 40: 2355-2380.
[8] Jabbari M., Sohrabpour S., Eslami M.R., 2003, General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads. ASME Journal of Applied Mechanics 70: 111-118.
[9] Ching H.K., Yen S.C., 2005, Meshless local Petrov-Galerkin analysis for 2D functionally graded elastic solids under mechanical and thermal loads, Composites Part B: Engineering 36: 223-240.
[10] Wang X., 1995, Thermal shock in a hollow cylinder caused by rapid arbitrary heating, Journal of Sound and Vibration 183(5): 899-906.
[11] Kandil A., EL-Kady A.A., EL-Kafrawy A., 1995, Transient thermal stress analysis of thick-walled cylinders, International Journal of Mechanical Sciences37: 721-732.
[12] Segall A.E., 2003, Transient analysis of thick-walled piping under polynomial thermal loading, Nuclear Engineering and Design 226: 183-191.
[13] Segall A.E., 2004, Thermoelastic stresses in an axisymmetric thick-walled tube under an arbitrary internal transient, ASME Journal of Pressure Vessel Technology 126: 327-332.
[14] Lee Z.Y., 2005, Hybrid numerical method applied to 3-D multilayered hollow cylinder with periodic loading conditions, Applied Mathematics and Computation 166: 95-117.
[15] Shahani A.R., Nabavi S.M., 2007, Analytical solution of the quasi-static thermoelasticity problem in a pressurized thick-walled cylinder subjected to transient thermal loading, Applied Mathematical Modelling 31:1807-1818.
[16] Ramadan K., 2009, Semi-analytical solutions for the dual phase lag heat conduction in multilayered media, International Journal of Thermal Sciences 48(1): 14-25.
[17] Reddy J.N., Chin C.D., 1998, Thermomechanical analysis of functionally graded cylinders and plates, Journal of Thermal Stresses 21: 593-626.
[18] Praveen G.N., Chin C.D., Reddy J.N., 1999, Thermoelastic analysis of a functionally graded ceramic-metal cylinder, ASCE Journal of Engineering Mechanics 125(11): 1259-1267.
[19] Obata Y., Kanayama K., Ohji T., Noda N., 1999, Two-dimensional unsteady thermal stresses in a partially heated circular cylinder made of functionally gradient materials, in: 3rd International Congress on Thermal Stresses, 595-598.
[20] Awaji H., Sivakumar R., 2001, Temperature and stress distribution in a hollow cylinder of functionally graded material: the case of temperature-independent material properties, Journal of the American Ceramic Society 84: 1059-1065.
[21] Kim K.S., Noda N., 2002, Green’s function approach to unsteady thermal stresses in an infinite hollow cylinder of functionally graded material, Acta Mechanica 156: 145-61.
[22] Sladek J., Sladek V., Zhang C., 2003, Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method, Computational Materials Science 28: 494-504.
[23] Wang B.L., Mai Y.W., Zhang X.H., 2004, Thermal shock resistance of functionally graded materials, Acta Materialia 52: 4961-4972.
[24] Wang B.L., Mai Y.W., 2005, Transient one-dimensional heat conduction problems solved by finite element, International Journal of Mechanical Sciences 47: 303-317.
[25] Hosseini S.M., Akhlaghi M., Shakeri M., 2007, Transient heat conduction in functionally graded thick hollow cylinders by analytical method, Heat and Mass Transfer 43: 669-675.
[26] Shao Z.S., Wang T.J., Ang K.K., 2007, Transient thermo-mechanical analysis of functionally graded hollow circular cylinders, Journal of Thermal Stresses 30(1): 81-104.
[27] Shao Z.S., Ma G.W., 2008, Thermo-mechanical stresses in functionally graded circular hollow cylinder with linearly increasing boundary temperature, Composite Structures 83(3): 259-265.
[28] Hosseini S.M., 2009, Coupled thermoelasticity and second sound in finite length functionally graded thick hollow cylinders (without energy dissipation), Materials & Design 30( 6): 2011-2023.
[29] Shariyat M., 2008, Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells, under combined axial compression and external pressure, International Journal of Solids and Structures 45: 2598-2612.
[30] He T., Tian X., Shen Y., 2002, Two-dimensional generalized thermal shock problem of a thick piezoelectric plate of infinite extent, International Journal of Engineering Science 40: 2249-2264.
[31] Tian X., Shen Y., Chen C., He T., 2006, A direct finite element method study of generalized thermoelastic problems, International Journal of Solids and Structures 43: 2050-2063.
[32] Bagri A., Eslami M.R., 2008, Generalized coupled thermoelasticity of functionally graded annular disk considering the Lord–Shulman theory, Composite Structures 83(2): 168-179.
[33] Shakeri M., Akhlaghi M., Hoseini S.M., 2006, Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder, Composite Structures 76: 174-181.
[34] Shariyat M., Eslami M.R., 1996, Isoparametric finite-element thermoelasto-plastic creep analysis of shells of revolution, International Journal of Pressure Vessels and Piping 68(3): 249-259.
[35] Zienkiewicz O.C., Taylor R.L., 2005, The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann, 6th edition.
[36] Reddy J.N., 2005, An Introduction to the Finite Element Method, McGraw-Hill, 3rd edition.
[37] Heinrich J.C., Pepper D.W., 2005, The Finite Element Method: Basic Concepts and Applications, Taylor & Francis, 2nd edition.
[38] Shariyat M., 2009, A nonlinear Hermitian transfinite element method for transient behavior analysis of hollow functionally graded cylinders with temperature-dependent materials under thermo-mechanical loads, International Journal of Pressure Vessels and Piping 86: 280-289.
[39] Shariyat M., Lavasani S.M.H., Khaghani M., 2010, Nonlinear transient thermal stress and elastic wave propagation analyses of thick temperature-dependent FGM cylinders, using a second-order point-collocation method, Applied Mathematical Modelling, doi: 10.1016/j.apm.2009.07.007.
[40] Shariyat M., Khaghani M., Lavasani S.M.H., 2010, Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperature-dependent material properties, European Journal of Mechanics-A/Solids, doi: doi:10.1016/j.euromechsol.2009.10.007.
[41] Azadi M., Shariyat M., 2009, Nonlinear transient transfinite element thermal analysis of thick-walled FGM cylinders with temperature-dependent material properties. Meccanica, doi: 10.1007/s11012-009-9249-4.
[42] Shen H.-S., 2009, Functionally Graded Materials: Nonlinear Analysis of Plates and Shell, CRC Press, Taylor & Francis Group, Boca Raton.
[43] Touloukian Y.S., 1976, Thermophysical Properties of High Temperature Solid Materials, McMillan, New York.
[44] Hetnarski R.B., Eslami M.R., 2009, Thermal Stresses - Advanced Theory and Applications, Springer.
[45] Reddy, J.N., 2005, An Introduction to the Finite Element Method, 3rd edition, McGraw-Hill.
[46] Honig G., Hirdes U., 1984, A method for the numerical inversion of Laplace transforms, Journal of Computational and Applied Mathematics 10: 113-132.