Effect of Surface Energy on the Vibration Analysis of Rotating Nanobeam
Subject Areas : EngineeringM Safarabadi 1 , M Mohammadi 2 , A Farajpour 3 , M Goodarzi 4
1 - School of Mechanical Engineering, College of Engineering, University of Tehran
2 - Department of Engineering, College of Mechanical Engineering, Ahvaz branch, Islamic Azad University
3 - Young Researches and Elites Club , North Tehran Branch, Islamic Azad University
4 - Department of Engineering, College of Mechanical Engineering, Ahvaz branch, Islamic Azad University
Keywords:
Abstract :
[1] Raighead H. G. C., 2000, Nanoelectromechanical systems, Science 290: 1532-1535.
[2] Ekinci K. L., Roukes M. L., 2005, Nanoelectromechanical systems, Review of Scientific Instruments 76: 1-12.
[3] Mindlin R. D., Tiersten H. F., 1962, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis 11: 415-448.
[4] Toupin R. A., 1962, Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis 11: 385-414.
[5] Akgöz B., Civalek Ö., 2013, Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory, Meccanica 48: 863-873.
[6] Akgöz B., Civalek Ö., 2011, Strain gradiant and modified couple stress models for buckling analysis of axially loaded micro-scales beam, International Journal of Engineering Science 49: 1268-1280.
[7] Civalek Ö., Demir C., Akgöz B., 2010, Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model, Mathematical and Computational Applications 15: 289-298.
[8] Civalek Ö., Demir Ç., 2011, Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory, Applied Mathematical Modeling 35: 2053-2067.
[9] Farajpour A., Danesh M., Mohammadi M., 2011, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E 44: 719-727.
[10] Mohammadi M., Goodarzi M., Ghayour M., Farajpour A., 2013, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites: Part B 51: 121-129.
[11] Mohammadi M., Moradi A., Ghayour M., Farajpour A., 2014, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures 11: 437- 458.
[12] Eringen A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics 54: 4703- 4710.
[13] Eringen A.C., 2002, Nonlocal Continuum Field Theories, Springer, New York.
[14] He L., Lim C., Wu B., 2004, A continuum model for size-dependent deformation of elastic films of nano-scale thickness, International Journal of Solids and Structures 41: 847- 857.
[15] Ghorbanpour Arani A., Kolahchi R., Vossough H., 2012, Nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient, Physica B: Condensed Matter 407: 4281- 4286.
[16] Akgöz B., Civalek Ö., 2011, Application of strain gradient elasticity theory for buckling analysis of protein microtubules, Current Applied Physics 11: 1133-1138.
[17] Akgöz B., Civalek Ö., 2012, Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory, Archive of Applied Mechanics 82: 423- 443.
[18] Akgöz B., Civalek Ö., 2013, A size-dependent shear deformation beam model based on the strain gradient elasticity theory, International Journal of Engineering Science 70: 1-14.
[19] Gurtin M., Murdoch A. I., 1975, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis 57: 291-323.
[20] Gurtin M., Weissmüller J., Larche F., 1998, A general theory of curved deformable interfaces in solids at equilibrium, Philosophical Magazine A 78: 1093-1109.
[21] Asgharifard Sharabiani P., Haeri Yazdi M.R., 2013, Nonlinear free vibrations of functionally graded nanobeams with surface effects, Composites Part B: Engineering 45: 581-586.
[22] Wang G., Feng X., Yu S., 2007, Surface buckling of a bending microbeam due to surface elasticity, Europhysics Letters 77: 44002.
[23] Assadi A., Farshi B., 2011, Size-dependent longitudinal and transverse wave propagation in embedded nanotubes with consideration of surface effects, Acta Mechanica 222: 27-39.
[24] Fu Y., Zhang J., Jiang Y., 2010, Influences of the surface energies on the nonlinear static and dynamic behaviors of nanobeams, Physica E: Low-Dimensional Systems and Nanostructures 42: 2268 -2273.
[25] Alizada A. N., Sofiyev A. H., 2011, On the mechanics of deformation and stability of the beam with a nanocoating, Journal of Reinforced Plastics and Composites 30:1583-1595.
[26] Alizada A. N., Sofiyev A. H., Kuruoglu N., 2012, Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load, Acta Mechanica 223:1371-1383.
[27] Alizada A. N., Sofiyev A. H., 2011, Modified Young’s moduli of nanomaterials taking into account the scale effects and vacancies, Meccanica 46: 915- 920.
[28] Gheshlaghi B., Hasheminejad S. M., 2011, Surface effects on nonlinear free vibration of nanobeams, Composites Part B: Engineering 42: 934 -937.
[29] Guo J. G., Zhao Y.P., 2007, The size-dependent bending elastic properties of nanobeams with surface effects, Nanotechnology 18: 295701.
[30] Hosseini-Hashemi S., Nazemnezhad R., 2013, An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects, Composites Part B: Engineering 52: 199-206.
[31] Liu C., Rajapakse R., 2010, Continuum models incorporating surface energy for static and dynamic response of nanoscale beams, Nanotechnology 9: 422- 431.
[32] Malekzadeh P., Shojaee M., 2013, Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams, Composites Part B: Engineering 52:82-94.
[33] Mahmoud F., Eltaher M., Alshorbagy A., Meletis E., 2012, Static analysis of nanobeams including surface effects by nonlocal finite element, Journal of Mechanical Science and Technology 26: 3555-3563.
[34] Eltaher M. A., Mahmoud F. F., Assie A. E., Meletis E. I., 2013, Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams, Applied Mathematics and Computation 224: 760-774.
[35] Pradhan S. C., Murmu T., 2010, Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever, Physica E 42: 1944 -1949.
[36] Assadi A., Farshi B., 2011, Size dependent stability analysis of circular ultrathin films in elastic medium with consideration of surface energies, Physica E 43: 1111-1117.
[37] Assadi A., Farshi B., 2011, Size dependent vibration of curved nanobeams and rings including surface energies, Physica E 43: 975-978.
[38] Farajpour A., Dehghany M., Shahidi A. R., 2013, Surface and nonlocal effects on the axisymmetric buckling of circular graphene sheets in thermal environment, Composites Part B: Engineering 50: 333-343.
[39] Asemi S. R., Farajpour A., 2014, Decoupling the nonlocal elasticity equations for thermo-mechanical vibration of circular graphene sheets including surface effects, Physica E 60: 80-90.
[40] Farajpour A., Rastgoo A., Mohammadi M., 2014, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications 57: 18-26.
[41] Shenoy V. B., 2005, Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Physical Review B 71: 094104-094115.
[42] Lu P., He L., Lee H., Lu C., 2006, Thin plate theory including surface effects, International Journal of Solids and Structures 43: 4631- 4647.
[43] Rao S. S., 2007, Vibration of Continuous Systems, John Wiley & Sons.
[44] Gurtin M. E., Markenscoff X., Thurston R. N., 1976, Effect of surface stress on the natural frequency of thin crystals, Applied Physics Letters 29: 529-530.
[45] Danesh M., Farajpour A., Mohammadi M., 2012, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications 39: 23- 27.
[46] Farajpour A., Mohammadi M., Shahidi A.R., Mahzoon M., 2011, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E 43: 1820-1825.
[47] Moosavi H., Mohammadi M., Farajpour A., Shahidi A. R., 2011, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E 44: 135-140.
[48] Mohammadi M., Goodarzi A., Ghayour M., Alivand S., 2012, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, Journal of Solid Mechanics 4: 128-143.
[49] Mohammadi M., Farajpour A., Goodarzi M., Dinari F., 2014, Thermo-mechanical vibration of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures 11: 659- 682.
[50] Shu C., 2000, Differential Quadrature and its Application in Engineering, Springer, Great Britain.
[51] Civalek Ö., 2004, Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns, Engineering Structures 26: 171-186.
[52] Civalek Ö., 2007, Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method, International Journal of Mechanical Sciences 49: 752-765.
[53] Civalek Ö., 2007, Nonlinear analysis of thin rectangular plates on Winkler–Pasternak elastic foundations by DSC–HDQ methods, Applied Mathematical Modelling 31: 606 -624.
[54] Civalek Ö., 2007, Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: Discrete singular convolution (DSC) approach, Journal of Computational and Applied Mathematics 205: 251-271.
[55] Mohammadi M., Farajpour A., Moradi A., Ghayour M., 2014, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites: Part B 56: 629- 637.
[56] Mohammadi M., Farajpour A., Goodarzi M., Shehni Nezhad Pour H., 2014, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science 82: 510 -520.
[57] Mohammadi M., Ghayour M., Farajpour A., 2013, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites: Part B 45: 32- 42.
[58] Farajpour A., Shahidi A. R., Mohammadi M., Mahzoon M., 2012, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures 94: 1605-1615.
[59] Asemi S. R., Farajpour A., Asemi H. R., Mohammadi M., 2014, Influence of initial stress on the vibration of double-piezoelectricnanoplate systems with various boundary conditions using DQM, Physica E 63: 169 -179.
[60] Asemi S. R., Farajpour A., Mohammadi M., 2014, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures 116: 703-712.
[61] Asemi S. R., Mohammadi M., Farajpour A., 2014, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures 11: 1541-1564.
[62] Mohammadi M., Farajpour A., Goodarzi M., Heydarshenas R., 2013, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics 5: 116-132.
[63] Mohammadi M., Farajpour A., Goodarzi M., Mohammadi H., 2013, Temperature effect on vibration analysis of annular graphene sheet embedded on visco-pasternak foundation, Journal of Solid Mechanics 5: 305-323.
[64] Goodarzi M., Mohammadi M., Farajpour A., Khooran M., 2014, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco pasternak foundation, Journal of Solid Mechanics 6: 98-121.
[65] Bert C. W, Malik M., 1996, Differential quadrature method in computational mechanics, Applied Mechanic Review 49: 1-27.
[66] Shu C., Richards B.E., 1992, Application of generalized differential quadrature to solve two-dimensional incompressible Navier Stokes equations, International Journal for Numerical Methods in Fluids 15: 791-798.
[67] Miller R. E., Shenoy V. B., 2000, Size dependent elastic properties of structural elements, Nanotechnology 11: 139-147.
[68] Daw M. S., Baskes M. I., 1984, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Physical Review B 29: 6443-6453.
[69] Hosseini-Hashemi S.h., Fakher M., Nazemnezhad R., 2013, Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: a comparison between euler-bernoulli and timoshenko, Journal of Solid Mechanics 5: 290-304.