Energy-Based Prediction of Low-Cycle Fatigue Life of CK45 Steel and SS316 Stainless Steel
Subject Areas : Engineering
1 - Department of Mechanical Engineering, Ferdowsi University of Mashhad
2 - Department of Mechanical Engineering, Shahrood University of Technology
Keywords:
Abstract :
[1] Yang X., 2005, Low cycle fatigue and cyclic stress ratcheting failure behavior of carbon steel 45 under uniaxial cyclic loading, International Journal of Fatigue 27: 1124-1132.
[2] Date S., Ishikawa H., Otani T., Takahashi Y., 2008, Effect of ratcheting deformation on fatigue and creep-fatigue life of 316FR stainless steel, Nuclear Engineering and Design 328: 336-346.
[3] You B-R., Lee S-B., 1996, A critical review on multiaxial fatigue assessments of materials, International Journal of Fatigue 18(4): 253-344.
[4] Jahed H., Farahani A.V., Noban M., Khalaji I., 2007, An energy based fatigue life assessment model for various metallic materials under proportional and non-proportional loading conditions, International Journal of Fatigue 29: 647-655.
[5] Smith R.N., Watson P., Topper T.H., 1970, A stress-strain function for the fatigue of metal, Journal of Material, JMLSA 5(4): 767-778.
[6] Lorenzo F., Laird C., 1984, A new approach to predicting fatigue life behavior under the action of mean stresses, Material Science and Engineering 62(2): 205-210.
[7] Koh S.K., Stephens R.I., 1991, Mean stress effects on low cycle fatigue for a high strength steel, Fatigue & Fracture of Engineering Materials & Structures 14(4): 413-428.
[8] Halford G.J., 1966, The energy required for fatigue, Journal of Materials 1(1): 3-18.
[9] Kujawski D., Ellyin F., 1995, A unified approach to mean stress effect on fatigue threshold conditions, International Journal of Fatigue 12(2): 101-106.
[10] Golos K., Ellyin F.A., 1988, A total strain energy density theory for cumulative fatigue damage, Journal of Pressure Vessel Technology 110(1): 36-41.
[11] Sugiura K., Chang K.C., 1991, Evaluation of low-cycle fatigue strength of structural metal, Journal of Engineering Mechanics (ASCE) 117(10): 2373-2383.
[12] Dutta A., Dhar S., Acharyya S.K., 2010, Characterization of SS316 in low-cycle fatigue loading, Journal of Materials Science 45(7): 1782-1789.
[13] Callaghan M.D., Humphries S.R., Law M., Ho M., Bendeich P., Li H., Yeung W.Y., 2010, Energy-based approach for the evaluation of low cycle fatigue behavior of 2.25cr-1 Mo steel at elevated temperature, Materials Science & Engineering 527 (21-22): 5619-23.
[14] Lv F., Yang F., Li S.X., Zhang Z.F., 2011, Effect of hysteresis energy and mean stress on low-cycle fatigue behaviors of and extruded magnesium alloy, Scripta Materialia 65(1): 53-56.
[15] Abdalla J.A., Hawileh R.A., Oudah, F., Abdelrahman K., 2009, Energy-based prediction of low-cycle fatigue life of BS 460B and BS B500B steel bars, Material & Design 30: 4405-4413.
[16] Gloanec A.I., Milani T., Henaff G., 2010, Impact of microstructure, temperature and strain ratio on energy-based low-cycle fatigue life prediction models for TiAl alloys, International Journal of Fatigue 32(7): 1015-1021.
[17] Yunrong L.U., Chongxiang H.U., Li G., Qingyuan W., 2012, Energy-based prediction of low-cycle fatigue life of high-strength structural steel, International Journal of Iron and Steel Research 19(10): 47-53.
[18] Basquin O.H., 1910, The exponential law of endurance tests, American Society for Testing Materials 10: 625-630.
[19] Coffin L.F., 1954, A study of the effects of cyclic thermal stresses on a ductile metal, Transactions of the ASME 76: 931-950.
[20] Manson S.S., 1953, Behavior of materials under condition of thermal stress, Heat Transfer Symposium, University of Michigan Engineering Research Institute, MI, USA.
[21] Tchankov D.S, Vesselinov K.V., 1998, Fatigue life prediction under random loading using total hysteresis energy, International Journal of Pressure Vessels and Piping 75: 955-960.
[22] Lagoda T., 2001, Energy models for fatigue life estimation under uniaxial random loading part I: the model elaboration, International Journal of Fatigue 23: 467-480.