Fracture Analysis of Externally Semi-Elliptical Crack in a Spherical Pressure Vessel with Hoop-Wrapped Composite
Subject Areas : EngineeringH Eskandari 1 , Gh Rashed 2 , F Mirzade 3
1 - Abadan Institute of Technology, Petroleum University of Technology, Abadan, Iran
2 - Abadan Institute of Technology, Petroleum University of Technology, Abadan, Iran
3 - Abadan Institute of Technology, Petroleum University of Technology, Abadan, Iran
Keywords:
Abstract :
[1] Hearn E.J., 1997, Mechanics of Materials 2, The mechanics of elastic and plastic deformation of solids and structural materials: Butterworth-Heinemann.
[2] Nilsen K., 2011, Development of Low Pressure Filter Testing Vessel and Analysis of Electrospun Nanofiber Membranes for Water Treatment, Wichita State University.
[3] Shahani A., Nabavi S., 2006, Closed form stress intensity factors for a semi-elliptical crack in a thick-walled cylinder under thermal stress, International Journal of Fatigue 28(8): 926-933.
[4] Aydin L., Artem H.S.A, 2008, Axisymmetric crack problem of thick-walled cylinder with loadings on crack surfaces, Engineering Fracture Mechanics 75(6): 1294-1309.
[5] Miura N., 2008, Comparison of stress intensity factor solutions for cylinders with axial and circumferential cracks, Nuclear Engineering and Design 238(2): 423-434.
[6] Shahani A., Habibi S., 2007, Stress intensity factors in a hollow cylinder containing a circumferential semi-elliptical crack subjected to combined loading, International Journal of Fatigue 29(1): 128-140.
[7] Chao Y. J., Chen H., 1989, Stress intensity factors for complete internal and external cracks in spherical shells, International Journal of Pressure Vessels and Piping 40(4): 315-326.
[8] El Hakimi A., Le Grognec P., Hariri S., 2008, Numerical and analytical study of severity of cracks in cylindrical and spherical shells, Engineering Fracture Mechanics 75(5): 1027-1044.
[9] Perl M., Bernshtein V., 2010, 3-D stress intensity factors for arrays of inner radial lunular or crescentic cracks in a typical spherical pressure vessel, Engineering Fracture Mechanics 77(3): 535-548.
[10] Perl M., Bernshtein V., 2012, Three-dimensional stress intensity factors for ring cracks and arrays of coplanar cracks emanating from the inner surface of a spherical pressure vessel, Engineering Fracture Mechanics 94: 71-84.
[11] Baker A., Jones R., 1988, Bonded Repair of Aircraft Structures, Martinus Nijhoff, Dordrecht.
[12] Benyahia F., Albedah A., Bouiadjra B.B., 2014, Stress intensity factor for repaired circumferential cracks in pipe with bonded composite wrap, Journal of Pressure Vessel Technology 136(4): 041201.
[13] Gu L., Kasavajhala A.R.M., Zhao S., 2011, Finite element analysis of cracks in aging aircraft structures with bonded composite-patch repairs, Composites Part B: Engineering 42(3): 505-510.
[14] Su B., Bhuyan G., 1998, Effect of composite wrapping on the fracture behavior of the steel-lined hoop-wrapped cylinders, International Journal of Pressure Vessels and Piping 75(13): 931-937.
[15] Shahani A., Kheirikhah M., 2007, Stress intensity factor calculation of steel-lined hoop-wrapped cylinders with internal semi-elliptical circumferential crack, Engineering Fracture Mechanics 74(13): 2004-2013.
[16] Chen J., Pan H., 2013, Stress intensity factor of semi-elliptical surface crack in a cylinder with hoop wrapped composite layer, International Journal of Pressure Vessels and Piping 110: 77-81.
[17] Committee A.I.H., 1990, Engineered Materials Handbook: Adhesives and Sealants, CRC.
[18] 16.0, A., 2016, FE program package, ANSYS Inc.
[19] Standard, 2007, A. 579-1/ASME FFS-1 Fitness for Service, API.