Size-Dependent Analysis of Orthotropic Mindlin Nanoplate on Orthotropic Visco-Pasternak Substrate with Consideration of Structural Damping
Subject Areas : EngineeringA Ghorbanpour Arani 1 , M.H Jalaei 2 , S Niknejad 3 , A.A Ghorbanpour Arani 4
1 - Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran-----
Institute of Nanoscience & Nanotechnology, University of Kashan, Kashan, Iran
2 - Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
3 - Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
4 - School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
Keywords:
Abstract :
[1] Lee C., Wei X.D., Kysar J.W., Hone J., 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321: 385-388.
[2] Robinson J.T., Zalalutdinov M., Baldwin J.W., Snow E.S., Wei Z., Sheehan P., Houston B.H., 2008, Wafer-scale reduced graphene oxide films for nanomechanical devices, Nano Letters 8: 3441-3445.
[3] Pisana S., Braganca P.M., Marinero E.E., Gurney B.A., 2010, Graphene magnetic field sensors, IEEE Transactions on Magnetics 46: 1910-1913.
[4] Kuilla T., Bhadra S., Yao D., Kim N.H., Bose S., Lee J.H., 2010, Recent advances in graphene based polymer composites, Progress in Polymer Science 35: 1350-1375.
[5] Ryzhii M., Satou A., Ryzhii V., Otsuji T., 2008, High-frequency properties of a graphene nanoribbon field-effect transistor, Journal of Applied Physics 104: 114505.
[6] Murmu T., Adhikari S., 2013, Nonlocal mass nanosensors based on vibrating monolayer graphene sheets, Sensors and Actuators B: Chemical 188: 1319-1327.
[7] Kuila T., Bose S., Khanra P., Mishra A.K., Kim N.H., Lee J.H., 2011, Recent advances in graphene-based biosensors, Biosensors and Bioelectronics 26: 4637-4648.
[8] Sun X., Liu Z., Welsher K., Robinson J.T., Goodwin A., Zaric S., Dai H., 2008, Nano-graphene oxide for cellular imaging and drug delivery, Nano Research 1: 203-212.
[9] Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P., 2003, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids 51: 1477-1508.
[10] Akgöz, B., Civalek Ö., 2012, Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory, Materials and Design 42: 164-171.
[11] Ghorbanpour Arani A., Abdollahian M., Jalaei M.H., 2015, Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory, Journal of Theoretical Biology 367: 29-38.
[12] Eringen A.C., 2002, Nonlocal Continuum Field Theories, New York, Springer.
[13] Pradhan S.C., Murmu T., 2009, Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics, Computational Materials Science 47: 268-274.
[14] Hosseini Hashemi Sh., Tourki Samaei A., 2011, Buckling analysis of micro/nanoscale plates via nonlocal elasticity theory, Physica E 43: 1400-1404.
[15] Shen H.S., 2011, Nonlocal plate model for nonlinear analysis of thin films on elastic foundations in thermal environments, Composite Structures 93: 1143-1152.
[16] Ansari R., Rouhi H., 2012, Explicit analytical expressions for the critical buckling stresses in a monolayer graphene based on nonlocal elasticity, Solid State Communications 152: 56-59.
[17] Mohammadi M., Ghayour M., Farajpour A., 2013, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites: Part B 45: 32-42.
[18] Zenkour A.M., Sobhy M., 2013, Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler–Pasternak elastic substrate medium, Physica E 53: 251-259.
[19] Ghorbanpour Arani A., Maboudi M.J., Kolahchi R., 2014, Nonlinear vibration analysis of viscoelastically coupled DLAGS-system, European Journal of Mechanics A/Solids 45: 185-197.
[20] Kananipour H., 2014, Static analysis of nanoplates based on the nonlocal Kirchhoff and Mindlin plate theories using DQM, Latin American Journal of Solids and Structures 11: 1709-1720.
[21] Mohammadi M., Farajpour A., Goodarzi M., Shehni nezhad pour H., 2014, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science 82: 510-520.
[22] Golmakani M.E., Rezatalab J., 2014, Nonlinear bending analysis of orthotropic nanoscale plates in an elastic matrix based on nonlocal continuum mechanics, Composite Structures 111: 85-97.
[23] Liu C.C., Chen Z.B., 2014, Dynamic analysis of finite periodic nanoplate structures with various boundaries, Physica E 60: 139-146.
[24] Ghorbanpour Arani A., Jalaei M.H., 2015, Nonlocal dynamic response of embedded single-layered graphene sheet via analytical approach, Journal of Engineering Mathematics 92: 129-144.
[25] Pouresmaeeli S., Ghavanloo E., Fazelzadeh S.A., 2013, Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium, Composite Structures 96: 405-410.
[26] Karličić D., Kozić P., Pavlović R., 2014, Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium, Composite Structures 115: 89-99.
[27] Wang Y., Li F.M., Wang Y.Z., 2015, Nonlinear vibration of double layered viscoelastic nanoplates based on the nonlocal theory, Physica E 67: 65-76.
[28] Hosseini Hashemi Sh., Mehrabani H., Ahmadi-Savadkoohi A., 2015, Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium, Composites Part B 78: 377-383.
[29] Reddy J.N., 2004, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton.
[30] Ghorbanpour Arani A., Shiravand A., Rahi M., Kolahchi R., 2012, Nonlocal vibration of coupled DLGS systems embedded on visco-Pasternak foundation, Physica B 407: 4123-4131.
[31] Kutlu A., Uğurlu B., Omurtag M.H., Ergin A., 2012, Dynamic response on Mindlin plates resting on arbitrarily orthotropic Pasternak foundation and partially in contact with fluid, Ocean Engineering 42: 112-125.
[32] Kiani Y., Sadighi M., Eslami M.R., 2013, Dynamic analysis and active control of smart doubly curved FGM panels, Composite Structures 102: 205-216.
[33] Krylov V.I., Skoblya N.S., 1977, A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation, Moscow, Mir Publishers.
[34] Mohammadi M., Farajpour A., Goodarzi M., Heydarshenas., 2013, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics 5: 116-132.
[35] Thai H-T., Kim S-E., 2012, Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates, International Journal of Mechanical Sciences 54: 269-276.
[36] Reddy J.N., 2000, Analysis of functionally graded plates, International Journal for Numerical Methods in Engineering 47: 663-684.