Cell Deformation Modeling Under External Force Using Artificial Neural Network
Subject Areas : EngineeringM.T Ahmadian 1 , G.R Vossoughi 2 , A.A Abbasi 3 , P Raeissi 4
1 - Center of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology
2 - Center of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology
3 - School of Mechanical Engineering, Sharif University of Technology
4 - Iran University of Medical Sciences, Tehran
Keywords:
Abstract :
[1] Lim, C.T., Zhou, E.H., Quek, S.T., 2006, Mechanical models for living cells - a review, Journal of Biomechanics 39: 195-216.
[2] Sen, S., Subramanian S., Discher D.E., 2005, Indentation and adhesive probing of a cell membrane with AFM: Theoretical model and experiments, Biophysical Journal 89: 3203-3213.
[3] Lulevich V., Zink T., Chen H.Y., Liu F.T., Liu G.Y., 2006, Cell Mechanics using atomic force microscopy - based single-cell compression, Langmuir 22:8151-8155.
[4] Dao M., Lim C.T., Suresh S., 2003, Mechanics of the human red blood cell deformed by optical tweezers, Journal of the Mechanics and Physics of Solids 51: 2259-2280.
[5] Thoumine O.,Ott A., 1997, Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation, Journal of Cell Science 110: 2109-2116.
[6] Vaziri A., Kaazempur Mofrad M.R., 2007, Mechanics and deformation of the nucleus in micropipette aspiration Experiment, Journal of Biomechanics 40: 2053-2062.
[7] He J.H., Xu W., Zhu L., 2007, Analytical model for extracting mechanical properties of a single cell in a tapered micropipette, Applied Physics Letters 90: 023901.
[8] Sterjovski Z., Nolan D., Carpenter K.R., Dunne D.P., Norrish J., 2005, Artificial neural networks for modelling the mechanical properties of steels in various applications, Journal of Materials Processing Technology 170: 536-544.
[9] Dashtbayazi M.R., Shokuhfar A., Simchi A., 2007, Artificial neural network modeling of mechanical alloying process for synthesizing of metal matrix nanocomposite powders, Materials Science and Engineering A 466: 274-283.
[10] Sun Y., Wan K.T., Roberts K.P., Bischof J.C., Nelson B.J., 2003, Mechanical Property Characterization of Mouse Zona Pellucida, IEEE Transactions on Nanobioscience 2: 279-286.
[11] Zahalak G.I., McConnaughey W.B., Elson E.L., 1990, Determination of cellular mechanical properties by cell poking, with an application to leukocytes, Journal of biomechanical engineering 112: 283-294.
[12] Bahrami A., Mousavi Anijdan S.H., Madaah Hosseini H.R.,2005, Effective parameters modeling in compression of an austenitic stainless steel using artificial neural network, Computational Materials Science 34: 335-341.
[13] Yazdanmehr M., Mousavi Anijdan S.H., Samadi A., Bahrami A., 2009, Mechanical behavior modeling of nanocrystalline NiAl compound by a feed-forward back-propagation multi-layer perceptron ANN, Computational Materials Science 44: 1231-1235.
[14] Samarasinghe S., 2006, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Reorganization, Auerbach Publications, Taylor & Francis Group, Boca Roton, New York.
[15] Sarangapani J., 2006, Neural Network Control of Nonlinear Discrete-Time Systems, CRC Press ,Taylor & Francis Group, Boca Roton, London, New York.
[16] Flückiger M., 2004, Cell Membrane Mechanical Modeling for Microrobotic Cell Manipulation, Diploma Thesis, ETHZ Swiss Federal Institute of Technology, Zurich, WS03/04.