Thermal Stability of Thin Rectangular Plates with Variable Thickness Made of Functionally Graded Materials
Subject Areas : Engineering
1 - Faculty of Engineering, University of Applied Science and Technology, Borojerd Branch
Keywords:
Abstract :
[1] Koizumi M., 1997, FGM activities in Japan, Composites part B: Engineering 28(1-2): 1-4.
[2] Fuchiyama T., Noda N., 1995, Analysis of thermal stress in a plate of functionally gradient material, JSME Review 16: 263-269.
[3] Tanigawa Y., Matsumoto M., Akai T., 1997, Optimization of material composition to minimiza thermal stresses in non-homogeneous plate subjected to unsteady heat supply, JSME International Journal Series A-Solid Mechanics and Material Engineering 40(1): 84-93.
[4] Takezono S., Tao K., Inamura E., 1996, Thermal stress and deformation in functionally graded material shells of revolution under thermal loading due to fluid, JSME International Journal Series A-Solid Mechanics and Material Engineering 62(594): 474-481.
[5] Aboudi J., Pindera M., Arnold S.M., 1995, Coupled higher-order theory for functionally grade composites with partial homogenization, Composites part B: Engineering 5(7): 771-792.
[6] Reddy J.N., Chin C.D., 1998, Thermomechanical analysis of functionally graded cylinders and plates, Journal of Thermal Stresses 2: 593-626.
[7] Reddy J.N., Cheng Z.Q., 2001, Three-dimensional thermomechanical deformations of functionally graded rectangular plates, European Journal of Mechanics A/Solids 20: 841-855.
[8] Cheng Z.Q., Batra R.C., 2000, Three-dimensional thermoelastic deformations of a functionally graded elliptic plate, Composites part B: Engineering 31: 97-106.
[9] Javaheri R., Eslami M.R., 2002, Thermal buckling of functionally graded plates, AIAA Journal 40(1): 162-169.
[10] Javaheri R., Eslami M.R., 2002, Thermal buckling of functionally graded plates based on higher order theory, Journal of Thermal Stresses 25(7): 603-625.
[11] Najafizadeh M.M., Eslami M.R., 2002, First order theory based thermoelastic stability of functionally graded material circular plates, AIAA Journal 40: 1444-1450.
[12] Najafizadeh M.M., Heydari H.R., 2004, Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory, European Journal of Mechanics A/Solids 23: 1085-1100.
[13] Wetherhold R.C., Seelman S., Wang J., 1996, The use of functionally graded materials to eliminate or control thermal deformation, Composite Science and Technology 56: 1099-1104.
[14] Tanigawa Y., Morishita H., Ogaki S., 1999, Derivation of system of fundamental equations for a three dimensional thermoelastic field with non-homogeneous material properties and its application to a semi-infinite body, Journal of Thermal Stresses 22: 689-711.
[15] Praveen G.N., Reddy J.N., 1998, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, International Journal of Solids and Structures 35: 33: 4457-4476.
[16] Brush D.O., Almroth B.O., 1975, Buckling of Bars, Plate and Shell, McGraw Hill, New York.