Buckling and Free Vibrations of a Magneto-Electro-Elastic Sandwich Panel with Flexible Core
Subject Areas : EngineeringH Talebi Amanieh 1 , S.A Seyed Roknizadeh 2 , A Reza 3
1 - Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 - Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
3 - Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
Keywords:
Abstract :
[1] Plantema F., 1966, Sandwich Construction, New York, John Wiley and Sons.
[2] Allen H.G., 2013, Analysis and Design of Structural Sandwich Panels: The Commonwealth and International Library: Structures and Solid Body Mechanics Division, Elsevier.
[3] Rais-Rohani M., Marcellier P.,1999, Buckling and vibration analysis of composite sandwich plates with elastic rotational edge restraints,AIAA Journal 37(5): 579-587.
[4] Frostig Y., Thomsen O.T., 2004, High-order free vibration of sandwich panels with a flexible core, International Journal of Solids and Structures 41(5-6): 1697-1724.
[5] Frostig Y., 1998, Buckling of sandwich panels with a flexible core—high-order theory, International Journal of Solids and Structures 35(3-4): 183-204.
[6] Schwarts-Givli H., Rabinovitch O., Frostig Y., 2007, Free vibrations of delaminated unidirectional sandwich panels with a transversely flexible core—a modified Galerkin approach, Journal of Sound and Vibration 301(1-2): 253-277.
[7] Schwarts-Givli H., Rabinovitch O., Frostig Y., 2008, Free vibration of delaminated unidirectional sandwich panels with a transversely flexible core and general boundary conditions—A high-order approach, Journal of Sandwich Structures & Materials 10(2): 99-131.
[8] Frostig Y., Thomsen O.T., 2009, On the free vibration of sandwich panels with a transversely flexible and temperature-dependent core material–Part I: Mathematical formulation,Composites Science and Technology 69(6): 856-862.
[9] Frostig Y., Thomsen O.T., 2009, On the free vibration of sandwich panels with a transversely flexible and temperature dependent core material–part II: numerical study,Composites Science and Technology 69(6): 863-869.
[10] Araújo A.L., Carvalho V.S., Mota Soares C.M., Belinha J., Ferreira A.J.M., 2016, Vibration analysis of laminated soft core sandwich plates with piezoelectric sensors and actuators,Composite Structures 151: 91-98.
[11] Malekzadeh Fard K., Payganeh G., Kardan M., 2013, Dynamic response of sandwich panels with flexible cores and elastic foundation subjected to low-velocity impact ,Amirkabir Journal of Science & Research (Mechanical Engineering) 45(2): 27-42.
[12] Malekzadeh Fard K., Malek M.H., 2017, Free vibration and buckling analysis of sandwich panels with flexible cores using an improved higher order theory, Journal of Solid Mechanics 9(1): 39-53.
[13] Daikh A.A., Drai A., Bensaid I., Houari M.S.A., Tounsi A., 2020, On vibration of functionally graded sandwich nanoplates in the thermal environment, Journal of Sandwich Structures & Materials doi.org/10.1177/1099636220909790.
[14] Jam J., Eftari B., Taghavian S., 2010, A new improved high‐order theory for analysis of free vibration of sandwich panels, Polymer Composites 31(12): 2042-2048.
[15] Mohammadimehr M., Mostafavifar M., 2016, Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT,Composites Part B: Engineering 94: 253-270.
[16] Kumar P., Srinivasa C., 2018, On buckling and free vibration studies of sandwich plates and cylindrical shells: a review, Journal of Thermoplastic Composite Materials 33: 673-724.
[17] Pan E., Heyliger P.R., 2002, Free vibrations of simply supported and multilayered magneto-electro-elastic plates, Journal of Sound and Vibration 252(3): 429-442.
[18] Buchanan G.R., 2004, Layered versus multiphase magneto-electro-elastic composites, Composites Part B: Engineering 35(5): 413-420.
[19] Chen W.Q., Lee K.Y., Ding H.J., 2005, On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates, Journal of Sound and Vibration 279: 237-251.
[20] Ramirez F., Heyliger P.R., Pan E., 2006, Free vibration response of two-dimensional magneto-electro-elastic laminated plates, Journal of Sound and Vibration 292(3-5): 626-644.
[21] Liu M.-F., Chang T.-P., 2010, Closed form expression for the vibration problem of a transversely isotropic magneto-electro-elastic plate ,Journal of Applied Mechanics 77(2): 024502.
[22] Davì G., Milazzo A., 2011, A regular variational boundary model for free vibrations of magneto-electro-elastic structures, Engineering Analysis with Boundary Elements 35(3): 303-312.
[23] Milazzo A., Orlando C., 2012, An equivalent single-layer approach for free vibration analysis of smart laminated thick composite plates,Smart Materials and Structures 21(7): 075031.
[24] Chang T.P., 2013, On the natural frequency of transversely isotropic magneto-electro-elastic plates in contact with fluid, Applied Mathematical Modelling 37(4): 2503-2515.
[25] Chang T.P., 2013, Deterministic and random vibration analysis of fluid-contacting transversely isotropic magneto-electro-elastic plates,Computers & Fluids 84: 247-254.
[26] Chen J.Y., Heyliger P.R., Pan E., 2014, Free vibration of three-dimensional multilayered magneto-electro-elastic plates under combined clamped/free boundary conditions, Journal of Sound and Vibration 333(17): 4017-4029.
[27] Kattimani S.C., Ray M.C., 2014, Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates,Composite Structures 114: 51-63.
[28] Ke L.-L., Wang Y.-S., Yang J., Kitipornchai S., 2014, Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory,Acta Mechanica Sinica 30(4): 516-525.
[29] Li Y., Zhang J., 2014, Free vibration analysis of magnetoelectroelastic plate resting on a Pasternak foundation,Smart Materials and Structures 23(2): 025002.
[30] Li Y.S., 2014, Buckling analysis of magnetoelectroelastic plate resting on Pasternak elastic foundation, Mechanics Research Communications 56: 104-114.
[31] Karimi M., Farajpour M.R., Rafieian S., Milani A.S., Khayyam H., 2020, Surface energy layers investigation of intelligent magnetoelectrothermoelastic nanoplates through a vibration analysis, The European Physical Journal Plus 135(6): 488.
[32] Karimi M., Shahidi A.R., 2019, A general comparison the surface layer degree on the out-of-phase and in-phase vibration behavior of a skew double-layer magneto–electro–thermo-elastic nanoplate, Applied Physics A 125(2): 106.
[33] Karimi M., Shahidi A.R., 2019, Comparing magnitudes of surface energy stress in synchronous and asynchronous bending/buckling analysis of slanting double-layer METE nanoplates, Applied Physics A 125(2): 154.
[34] Barati M.R., Shahverdi H., Zenkour A.M., 2017, Electro-mechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory, Mechanics of Advanced Materials and Structures 24(12): 987-998.
[35] Thai H.-T., Choi D.-H., 2012, A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation,Composites Part B: Engineering 43(5): 2335-2347.
[36] Yang C., Jin G., Ye X., Liu Z., 2016, A modified Fourier–Ritz solution for vibration and damping analysis of sandwich plates with viscoelastic and functionally graded materials, International Journal of Mechanical Sciences 106: 1-18.