Manuscript ID : JSM-2010-1648 (R1)
Visit : 347
Page: 221 - 251
10.22034/jsm.2021.1911067.1648
20.1001.1.20083505.2022.14.2.7.9
Article Type:
Original Research
Analysis of Nonlinear Vibration of Piezoelectric Nanobeam Embedded in Multiple Layers Elastic Media in a Thermo-Magnetic Environment Using Iteration Perturbation Method
Subject Areas :
Computational Mechanics
M.G Sobamowo
1
1 - Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria-----
Department of Mathematics, University of Lagos, Akoka, Lagos, Nigeria
Received: 2022-02-20
Accepted : 2022-04-15
Published : 2022-06-01
Keywords:
References:
Iijima S., 1991, Helical micro tubes of graphitic carbon, Nature 354: 56-58.
Terrones M., Banhart F., Grobert N., Charlier J., Terrones C., Ajayan H., 2002, Molecular junctions by joining single-walled carbon nanotubes, Physical Review Letters 89: 07550.
Nagy P., Ehlich R., Biro L.P., Gjyulai J., 2000, Y-branching of single walled carbon nanotubes, Applied Physics A 70: 481-483.
Chernozatonskii L.A., 1992, Carbon nanotubes connectors and planar jungle gyms, Applied Physics A 172: 173-176.
Liew K.M., Wong C.H., He X.Q., Tan M.J., Meguid S.A., 2004, Nanomechanics of single and multiwalled carbon nanotubes, Physical Review B 69: 115429.
Pantano A., Boyce M.C., Parks D.M., 2004, Mechanics of axial compression of single and multi-wall carbon nanotubes, Journal of Engineering Materials and Technology 126: 279-284.
Pantano A., Parks D.M., Boyce M.C., 2004, Mechanics of deformation of single- and multi-wall carbon nanotubes, Journal of the Mechanics and Physics of Solids 52: 789-821.
Qian D., Wagner G.J., Liu W.K., Yu M.F., Ruoff R.S., 2002, Mechanics of carbon nanotubes, Applied Mechanics Reviews 55: 495-533.
Salvetat J.P., Bonard J.-M., Thomson N.H., Kulik A.J., Forro L., Benoit W., Zuppiroli L., 1999, Mechanical properties of carbon nanotubes, Applied Physics A 69: 255-260.
Sears A., Batra R.C., 2006, Buckling of carbon nanotubes under axial compression, Physical Review B 73: 085410.
Yoon J., Ru C.Q., Mioduchowski A., 2002, Noncoaxial resonance of an isolated multiwall carbon nanotube, Physical Review B 66: 233402.
Wang X., Cai H., 2006, Effects of initial stress on non-coaxial resonance of multi-wall carbon nanotubes, Acta Materialia 54: 2067-2074.
Wang C.M., Tan V.B.C., Zhang Y.Y., 2006, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, Journal of Sound and Vibration 294: 1060-1072.
Zhang Y., Liu G., Han X., 2005, Transverse vibrations of double-walled carbon nanotubes under compressive axial load, Physics Letters A 340: 258-266.
Elishakoff I., Pentaras D., 2009, Fundamental natural frequencies of double-walled carbon nanotubes, Journal of Sound and Vibration 322: 652-664.
Buks E., Yurke B., 2006, Mass detection with nonlinear nanomechanical resonator, Physical Review E 74: 046619.
Postma H.W.C., Kozinsky I., Husain A., Roukes M.L., 2005, Dynamic range of nanotube- and nanowire-based electromechanical systems, Applied Physics Letters 86: 223105.
Fu Y.M., Hong J.W., Wang X.Q., 2006, Analysis of nonlinear vibration for embedded carbon nanotubes, Journal of Sound and Vibration 296: 746-756.
Dequesnes M., Tang Z., Aluru N.R., 2004, Static and dynamic analysis of carbon nanotube-based switches, Transactions of the ASME 126: 230-237.
Ouakad H.M., Younis M.I., 2010, Nonlinear dynamics of electrically actuated carbon nanotube resonators, Journal of Computational and Nonlinear Dynamics 5: 011009.
Zamanian M., Khadem S.E., Mahmoodi S.N., 2009, Analysis of non-linear vibrations of a microresonator under piezoelectric and electrostatic actuations, Journal of Mechanical Engineering Science 223: 329-344.
Belhadj A., Boukhalfa A., Belalia S., 2016, Carbon nanotube structure vibration based on nonlocal elasticity, Journal of Modern Materials 3(1): 9-13.
Abdel-Rahman E.M., Nayfeh A.H., 2003, Secondary resonances of electrically actuated resonant microsensors, Journal of Micromechnics and Microengineering 13: 491-501.
Hawwa M.A., Al-Qahtani H.M., 2010, Nonlinear oscillations of a double-walled carbon nanotube, Computational Materials Science 48: 140-143.
Hajnayeb A., Khadem S.E., 2012, Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation, Journal of Sound and Vibration 331: 2443-2456.
Xu K.Y., Guo X.N., Ru C.Q., 2006, Vibration of a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces, Journal of Applied Physics 99: 064303.
Lei X.W., Natsuki T., Shi J.X., Ni Q.Q., 2012, Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model, Composites Part B 43: 64-69.
Ghorbanpour A.A., Zarei M.S., Amir S., Khoddami M.Z., 2013, Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model, Physica B 410: 188-196.
Yoon J., Ru C.Q., Mioduchowski A., 2002, Non-coaxial resonance of an isolated multiwall carbon nanotube, Physical Review B 66: 233402-233414.
Yoon J., Ru C.Q., Mioduchowski A., 2003, Vibration of an embedded multiwalled carbon nanotube [J], Composites Science and Technology 63: 1533-1542.
Ansari R., Hemmatnezhad M., 2011, Nonlinear vibrations of embedded multi-walled carbon nanotubes using a variational approach, Mathematical and Computer Modelling 53(5-6): 927-938.
Ghorbanpour Arani A., Rabbani H., Amir S., Khoddami Maraghi Z., Mohammadimehr M., Haghparast E., Analysis of nonlinear vibrations for multi-walled carbon nanotubes embedded in an elastic medium, Journal of Solid Mechanics 3(3): 258-270.
Yoon J., Ru C.Q.C., Miodochowski A., 2003, Vibration of an embedded multiwalled carbon nanotubes, Composites Science and Technology 63: 1533-1542.
Wang C.M., Tan V.B.C., Zhang Y.Y., 2006, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, Journal of Sound and Vibration 294: 1060-1072.
Aydogdu M., 2008, Vibration of multi-walled carbon nanotubes by generalized shear deformation theory, International Journal of Mechanical Sciences 50: 837-844.
Sobamowo M. G., 2016, Nonlinear vibration analysis of single-walled carbon nanotube conveying fluid in slip boundary bonditions using variational iterative method, Journal of Applied and Computational Mechanics 2(4): 208-221.
Sobamowo M.G., 2017, Nonlinear analysis of flow-induced vibration in fluid-conveying structures using differential transformation method with cosine-after treatment technique, Iranian Journal of Mechanical Engineering Transactions of the ISME 18(1): 5-42.
Sobamowo M.G., 2017, Nonlinear thermal and flow-induced vibration analysis of fluid-conveying carbon nanotube resting on Winkler and Pasternak foundations, Thermal Science and Engineering Progress 4: 133-149.
Sobamowo M.G., Ogunmola B.Y., Osheku C.A., 2017, Thermo-mechanical nonlinear vibration analysis of fluid-conveying structures subjected to different boundary conditions using Galerkin-Newton-Harmonic balancing method, Journal of Applied and Computational Mechanics 3(1): 60-79.
Arefi A., Nahvi H., 2017, Stability analysis of an embedded single-walled carbon nanotube with small initial curvature based on nonlocal theory, Mechanics of Advanced Materials and Structures 24(11): 962-970.
Cigeroglu E., Samandari H., 2014, Nonlinear free vibrations of curved double walled carbon nanotubes using differential quadrature method, Physica E 64: 95-105.
Eringen A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics 54(9): 4703-4710.
Eringen A.C., 1972, Linear theory of nonlocal elasticity and dispersion of plane waves, International Journal of Engineering Science 10(5): 425-435.
Eringen A.C., 2002, Nonlocal Continuum Field Theories, Springer, New York.
Eringen A.C., Edelen D.G.B., 1972, On nonlocal elasticity, International Journal of Engineering Science 10(3): 233-248.
Yang F., Chong A., Lam D.C.C., Tong P., 2002, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures 39(10): 2731-
Park S., Gao X.-L., 2008, Variational formulation of a modified couple stress theory and its application to a simple shear problem, Zeitschrift für Angewandte Mathematik und Physik 59(5): 904-
Peddieson J., Buchanan G.R., McNitt R.P., 2003, Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science 41(3-5): 305-
Lu P., Lee H., Lu C., Zhang P., 2006, Dynamic properties of flexural beams using a nonlocal elasticity model, Journal of Applied Physics 99(7): 073510.
Reddy J., 2007, Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science 45(2-8): 288-
Reddy J., Pang S., 2008, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Journal of Applied Physics 103(2): 023511.
Lim C.W., 2010, On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: Equilibrium, governing equation and static deflection, Applied Mathematicsand Mechanics 31(1): 37-
Lim C.W., 2010, Is a nanorod (or nanotube) with a lower Young’s modulus stiffer? Is not Young’s modulus a stiffness indicator ?, Science China Physics, Mechanics & Astronomy 53(4): 712-
Hosseini S., Rahmani O., 2016, Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity, Journal of Thermal Stresses 39(10): 1252-
Tylikowski A., 2012, Instability of thermally induced vibrations of carbon nanotubes via nonlocal elasticity, Journal of Thermal Stresses 35(1-3): 281-
Ebrahimi F., Mahmoodi F., 2018, Vibration analysis of carbon nanotubes with multiple cracks in thermal environment, Advanced Nano Research 6(1): 57-
Zhang Y., Liu X., Liu G., 2007, Thermal effect on transverse vibrations of double-walled carbon nanotubes, Nanotechnology 18(44): 445701.
Murmu T., Pradhan S., 2009, Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, Computational Materials Science 46(4): 854-
Karli_ci_c D., Jovanovi_c D., Kozi_c P., Caji_c M., 2015, Thermal and magnetic effects on the vibration of a cracked nanobeam embedded in an elastic medium, Journalof Mechanics of Materials and Structures 10(1): 43-
Zarepour M., Hosseini S. A., 2016, A semi analytical method for electro-thermo-mechanical nonlinear vibration analysis of nanobeam resting on the Winkler–Pasternak foundations with general elastic boundary conditions, Smart Materials and Structures 25(8): 085005.
Ke L., Xiang Y., Yang J., Kitipornchai S., 2009, Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory, Computational Materials Science 47(2): 409-
Togun N., 2016, Nonlocal beam theory for nonlinear vibrations of a nanobeam resting on elastic foundation, Boundary Value Problems 2016(1): 57.
Ansari R., Gholami R., Darabi M., 2012, Nonlinear free vibration of embedded double-walled carbon nanotubes with layerwise boundary conditions, Acta Mechanica 223(12): 2523-
Ma’en S.S., 2017, Superharmonic resonance analysis of nonlocal nano beam subjected to axial thermal and magnetic forces and resting on a nonlinear elastic foundation, Microsystem Technologies 23(8): 3319-
Fallah A., Aghdam M., 2011, Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation, European Journal of Mechanics A/Solids 30(4): 571-583.
Fallah A., Aghdam M., 2012, Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation, Composites Part B: Engineering 43(3): 1523-1530.
Murmu T., Pradhan S., 2010, Thermal effects on the stability of embedded carbon nanotubes, Computational Materials Science 47(3): 721-726.
Simsek M., 2014, Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory, Composites Part B: Engineering 56: 621-628.
Murmu T., Pradhan S.C., 2009, Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, Computational Materials Science 46: 854-859.
Abdullah S.S., Hosseini-Hashemi S., Hussein N.A., Nazemnezhad R., 2020, Thermal stress and magnetic effects on nonlinear vibration of nanobeams embedded in nonlinear elastic medium, Journal of Thermal Stresses 43(10): 1316-1332.