Elasticity Exact Solution for an FGM Cylindrical Shaft with Piezoelectric Layers Under the Saint-Venant Torsion by Using Prandtl’s Formulation
Subject Areas : Mechanics of SolidsM. R Eslami 1 , M Jabbari 2 , A Eskandarzadeh Sabet 3
1 - Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran
2 - Mechanical Engineering Department, Postgraduate School, Islamic Azad University, South Tehran Branch, Iran
3 - Mechanical Engineering Department, Postgraduate School, Islamic Azad University, South Tehran Branch, Iran
Keywords:
Abstract :
- Rooney J.F., Ferrari M.,1995, Torsion and flexure of inhomogeneous elements, Composites Engineering 5: 901-911.
- Alibeigloo A., Chen W.Q., 2010, Elasticity solution for an FGM cylindrical panel integrated with piezoelectric layers, Europen Journal of Mechanics A/Solids 29: 714-723.
- Arghavan S., Hematiyan M.R., 2009, Torsion of functionally graded hollow tubes, European Journal Mechanics A/Solids 28(3): 551-559.
- Talebanpour A., Hematiyan M.R., 2014, Torsional analysis of piezoelectric hollow bars, International Journal of Applied Mechanics 6(2): 1450019.
- Gurel M.A., PekgökgözK., Kisa M., 2008, Approximate torsion analysis of closed moderately thick-walled, thick-walled, and solid cross-sections, Turkish Journal of Engineering and Environmental Sciences 32(5): 277-287.
- Tarn J.Q., Chang H.H., 2007, Torsion of cylindrically orthotropic elastic circular bars with radial inhomogeneity: some exact solutions and end effects, International Journal of Solids and Structures 45: 303-319.
- Ecsedi I., Baksa A., 2010, Prandtl’s formulation for the saint-venant’s of homogeneous piezoelectric beams, International Journal of Solids and Structures 47:3076-3083.
- Higgins T.J., 1942, A comprehensive review of Saint-Venant torsion problem, American Journal of Physics 10: 248-259.
- Timoshenko S.P., Goodier J.N., 1970, Theory of Elasticity, McGraw-Hill, New York.
- Sokolnikoff I.S., 1956, Mathematical Theory of Elasticity, McGraw-Hill, New York.
- Chen T., 2011, A novel class of graded cylinders neutral to host shafts of arbitrary cross-sections under torsion, Mechanics Research Communications 38: 68-71.
- Baron F.M., 1942, Torsion of multi-connected thin-walled cylinders, Journal of AppliedMechanics 9: 72-74.
- Li Z., Ko J.M., Ni Y.Q., 2000, Torsional rigidity of reinforced concrete bars with arbitrary sectional shape, Finite Elements in Analysis and Design 35: 349-361.
- Mejak G., 2000, Optimization of cross-section of h ollow prismatic bars in torsion, Communications in Numerical Methods in Engineering 16: 687-695.
- Sezawa K., Kubo K., 1931, The Buckling of a Cylindrical Shell Inder Torsion, Aerospace Research Institute, Tokyo Imperial University.
- Lundquist E., 1932, Strength Tests on Thin-Walled Duralumin Cylinders in Torsion, NACA Technical Notes 427: 1-24.
- Doostfatemeh A., Hematiyan M.R., Arghavan S., 2009, Closed-form approximate formulations for torsional analyses of hollow tube with straight and circular edges, Journal of Mechanics 25: 401-409.
- Muskhelishvilli N.I., 1953, Some Basic Problems of the Mathematical Theory of Elasticity, Groningen Holland.
- Booker J.R., Kitipornchai S., 1971, Torsion of multilayered rectangular section, Journal of the Engineering Mechanics Division 97(EM5): 1451-1468.
- Kuo Y.M., Conway H.D., 1973, The torsion of composite tubes and cylinders, International Journal of Solids and Structures 9(12): 1553-1565.
- Kuo Y.M., Conway H.D., 1974, Torsion of cylinders with multiple reinforcement, Journal of the Engineering Mechanics Division 100(EM2): 221-234.
- Kuo Y.M., Conway H.D., 1974, Torsion of composite rhombus cylinder, Journal of AppliedMechanics 31(2): 302-303.
- Kuo Y.M., Conway H.D., 1980, Torsion of reinforced square cylinder, Journal of the Engineering Mechanics Division 106(EM6): 1341-1347.
- Packham B.A., Shail R., 1978, Saint- Venant torsion of composite cylinders, Journal of Elasticity 8(4): 393-407.
- Ripton R., 1998, Optimal fiber configurations for maximum torsional rigidity, Archive for Rational Mechanics and Analysis 144(1):79-106.
- Herrmann L.R., 1965, Elastic torsional analysis of irregular shapes, Journal of the Engineering Mechanics Division 91(EM6): 11-19.
- Tarn J.Q., Chang H.H., 2008, Torsion of cylindrically orthotropic elastic circular bars with radial inhomogeneity: some exact solutions and end effects, International Journal of Solids and Structures 45: 303-319.
- Lekhnitskii S.G., 1971, Torsion of Anisotropic and Non-Homogeneous Beams, Fizmatlit, Moscow.
- Lekhnitskii S.G., 1981, Theory of Elasticity of an Anisotropic Body, Mir, Moscow.
- Bisegna P., 1998, The Saint–Venant problem in the linear theory of piezoelectricity, Atti dei Convegni Lincei, Accademia dei Lincei 140: 151-165.
- Bisegna P., 1999, The Saint–Venant problem for monoclinic piezoelectric cylinders, ZAMM 78(3): 147-165.
- Horgan C.O., 2007, On the torsion of functionally graded anisotropic linearly elastic bars, IMA Journal of Applied Mathematics 72(5): 556-562.
- Rovenski V., Harash E., Abramovich H., 2006, Saint-Venant’s problem for homogeneous piezoelectric beams, Technical Notes 967: 1-100.
- Rovenski V., Harash E., Abramovich H., 2007, Saint-Venant’s problem for homogeneous piezoelectric beams, Journal of AppliedMechanics 47(6): 1095-1103.
- Yang Y.S., 2005, Introduction to the Theory of Piezoelectricity, Springer Verlag, New York.
- Tawaka T., Fudaka T., Takada T., 1987, Flexural-torsion coupling vibration control of fiber composite cantilever beam by using piezoelectric actuators, Smart Materials and Structures 6: 477-484.
- Zehetner C., 2009, Compensation of torsional vibrations in rods by piezoelectric actuation, Acta Mechanica 207(1-2): 121-133.
- Maleki M., Naei M.H., Hoseinian E., Babahaji A., 2010, Exact three dimensional analysis for static torsion of piezoelectric rods, International Journal of Solids and Structures 28: 217-226.
- Sadd Martin H., 2009, Elasticity,Theory,Applications,and Numerics , Elsevier, USA.
- Prandtl L., 1903, Zur torsion von prismatischen Stäben, Physics 4: 758-770.
- Lurje A., 1970, Theory of Elasticity, Fizmatlit, Moscow.
- Ely J.F., Zienkiewicz O.C., 1960, Torsion of compound bars a relaxation solution, International Journal of Mechanical Sciences 1: 356-365.
- Ecsedi I., 2009, Some analytical solutions for saint-venant torsion of non-homogeneous cylindrical bars, Europen Journal of Mechanics A/Solids 28: 985-990.
- Yang J., 2005, An Introduction to the Theory of Piezoelectric, Springer, USA.
- Horgan C.O., Chan A.M., 1999, Torsion of functionally graded isotropic linearly elastic bars, Journal of Elasticity 52(2): 181-189.