Dynamic Response of Bi-Directional Functionally Graded Materials (BDFGMs) Beams Rested on Visco-Pasternak Foundation Under Periodic Axial Force
Subject Areas : EngineeringA.A Ghorbanpour Arani 1 , S Niknejad 2 , A.A Abbasian Arani 3
1 - Mechanical Engineering Faculty, University of Kashan, Kashan, Iran
2 - Mechanical Engineering Faculty, University of Kashan, Kashan, Iran
3 - Mechanical Engineering Faculty, University of Kashan, Kashan, Iran
Keywords:
Abstract :
[1] Bolotin V.V., 1964, The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco, CA.
[2] Simitses G.J., 1987, Instability of dynamically-loaded structures, Applied Mechanics Reviews 40(10): 1403-1408.
[3] Simitses G.J., 1990, Dynamic Stability of Suddenly Loaded Structures, New York, Springer.
[4] Iwatsubo T., Sugiyama Y., Ogino S., 1974, Simple and combination resonances of columns under periodic axial loads, Journal of Sound and Vibration 33: 211-221.
[5] Abbas B.A.H., Thomas J., 1978, Dynamic stability of Timoshenko beams resting on an elastic foundation, Journal of Sound and Vibration 60: 33-44.
[6] Aristizabal-Ochoa J.D., 1993, Statics stability and vibration of non-prismatic beams and columns, Journal of Sound and Vibration 162(3): 441-455.
[7] Briseghella L., Majorana C.E., Pellegrino C., 1998, Dynamic stability of elastic structures: a finite element approach, Computers & Structures 69: 11-25.
[8] Ozturk H., Sabuncu M., 2005, Stability analysis of a cantilever composite beam on elastic support, Composites Science and Technology 65: 1982-1995.
[9] Shastry B.P., Rao G.V., 1986, Dynamic stability of columns with two symmetrically placed intermediate supports, Journal of Sound and Vibration 104(3): 524-527.
[10] Li X.F., 2008, A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernaulli beams, Journal of Sound and Vibration 318(4-5): 1210-1229.
[11] Ke L.L., Wang Y.S., 2011, Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory, Composites Structures 93(2): 342-350.
[12] Mohanty S.C., Dash R.R., Rout T., 2012, Static and dynamic stability analysis of a functionally graded Timoshenko beam, International Journal of Structural Stability and Dynamics 12(4): 1250025-1250033.
[13] Fu Y., Wang J., Mao Y., 2012, Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment, Applied Mathematical Modelling 36(9): 4324-4340.
[14] Zamanzadeh M., Rezazadeh G., Jafarsadeghi-poornaki I., Shabani R., 2013, Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes, Applied Mathematical Modelling 37(10-11): 6964-6978.
[15] Ke L.L., Yang J., Kitipornchai S. 2013, Dynamic stability of functionally graded carbon nanotube-reinforced composite beams, Mechanics of Advanced Materials and Structures 20(1): 28-37.
[16] Ghorbanpour Arani A., Hashemian M., Kolahchi R., 2013, Nonlocal Timoshenko beam model for dynamic stability of double-walled boron nitride nanotubes conveying nanoflow, Proceedings of the Institution of Mechanical Engineers, Part N, Journal of Nanomaterials, Nanoengineering and Nanosystems 229(1): 2-16.
[17] Ghiasian S.E., Kiani Y., Eslami M.R., 2015, Nonlinear thermal dynamic buckling of FGM beams, European Journal of Mechanics - A/Solids 54: 232-242.
[18] Xu Y., Qian Y., Chen J., Song G., 2015, Stochastic dynamic characteristics of FGM beams with random material properties, Composites Structures 133: 585-594.
[19] Shegokara N.L., Lal A., 2016, Stochastic dynamic instability response of piezoelectric functionally graded beams supported by elastic foundation, Advances in Aircraft and Spacecraft Science 3(4): 471-502.
[20] Saffari S., Hashemian M., Toghraie D., 2017, Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects, Physica B 520: 97-105.
[21] Ghorbanpour Arani A., Cheraghbak A., Kolahchi R., 2016, Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory, Structural Engineering and Mechanics 60(3): 489-505.
[22] Ghorbanpour Arani A., Kolahchi R., Zarei M.S., 2015, Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory, Composites Structures 132: 506-526.
[23] Ghorbanpour Arani A., Jalaei M.H., 2016, Nonlocal dynamic response of embedded single-layered graphene sheet via analytical approach, Journal of Engineering Mathematics 98(1): 129-144.
[24] Yao J.C., 1963, Dynamic stability of cylindrical shells under static and periodic axial and radial loads, AIAA Journal of Air Transportation 1(6): 1391-1396.
[25] Nagai K., Yamaki N., 1978, Dynamic stability of circular cylindrical shells under periodic compressive forces, Journal of Sound and Vibration 58(3): 425-441.
[26] Ghorbanpour Arani A., Mortazavi S.A., Khoddami Maraghi Z., 2015, Dynamic stability of nanocomposite viscoelastic cylindrical shells coating with a piezomagnetic layer conveying pulsating fluid flow, Science and Engineering of Composite Materials 24(3): 401-414.
[27] Arefi M., Zenkour A.M., 2017, Analysis of wave propagation in a functionally graded nanobeam resting on visco-Pasternak’s foundation, Theoretical and Applied Mechanics Letters 7(3): 145-151.
[28] Arefi M., 2016, Considering the surface effect and nonlocal elasticity in wave propagation of a nano functionally graded piezoelectric rod excited to two dimensional electric potential and applied voltage, Applied Mathematics and Mechanics 37(3): 289-302.
[29] Arefi M., Zenkour A.M., 2017, Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model, Journal of Intelligent Material Systems and Structures 28(17): 2403-2413.
[30] Arefi M., Soltan Arani A.H., 2018, Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments, Mechanics Based Design of Structures and Machines 46(6): 669-692.
[31] Zenkour A.M., Arefi M., 2017, Nonlocal transient electrothermomechanical vibration and bending analysis of a functionally graded piezoelectric single-layered nanosheet rest on visco-Pasternak foundation, Journal of Thermal Stresses 40(2): 167-184.
[32] Ghorbanpour Arani A., Haghparast E., BabaAkbar-Zarei H., 2017, Vibration analysis of functionally graded nanocomposite plate moving in two directions, Steel and Composite Structures 23(5): 529-541.
[33] Ghorbanpour Arani A., GS Jafari G.S., 2015, Nonlinear vibration analysis of laminated composite Mindlin micro/nano-plates resting on orthotropic Pasternak medium using DQM, Applied Mathematics and Mechanics 36(8): 1033-1044.
[34] Arefi M., Mohammad-Rezaei Bidgoli E., Dimitri R., Tornabene F., 2018, Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets, Aerospace Science and Technology 81: 108-117.
[35] Arefi M., Pourjamshidian M., Ghorbanpour Arani A., 2017, Application of nonlocal strain gradient theory and various shear deformation theories to nonlinear vibration analysis of sandwich nano-beam with FG-CNTRCs face-sheets in electro-thermal environment, Applied Physics A 123(5): 323.
[36] Arefi M., Zenkour A.M., 2017, Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams, Applied Physics A 123(3): 202.
[37] Arefi M., Zenkour A.M., 2017, Electro-magneto-elastic analysis of a three-layer curved beam, Smart Structures and Systems 19(6): 695-703.
[38] Arefi M., Zenkour A.M., 2016, Employing sinusoidal shear deformation plate theory for transient analysis of three layers sandwich nanoplate integrated with piezo-magnetic face-sheets, Smart Materials and Structures 25: 115040.
[39] Arefi M., Zenkour A.M., 2017, Thermo-electro-mechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory, Composite Structures 162: 108-122.
[40] Arefi M., Zenkour A.M., 2017, Thermo-electro-magneto-mechanical bending behavior of size-dependent sandwich piezomagnetic nanoplates, Mechanics Research Communications 84: 27-42.
[41] Arefi M., Zenkour A.M., 2017, Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation, Physica B : Condensed Matter 521: 188-197.
[42] Arefi M., Zamani M.H., Kiani M., 2017, Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak’s foundation, Journal of Intelligent Material Systems and Structures 29(5): 774-786.
[43] Karamanli A., 2017, Elastostatic analysis of two-directional functionally graded beams using various beam theories and Symmetric Smoothed Particle Hydrodynamics method, Composites Structures 160: 653-669.
[44] Hao D., Wei C., 2016, Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams, Composites Structures 141: 253-263.
[45] Ghorbanpour Arani A., Haghparast E., BabaAkbar-Zarei H., 2016, Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field, Physica B 495: 35-49.
[46] Mohammadimehr M., Rousta Navi B., Ghorbanpour Arani A., 2017, Dynamic stability of modified strain gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded single-walled carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magneto-mechanical loadings, Mechanics of Advanced Materials and Structures 24(16): 1325-1342.
[47] Shu C., 2000, Differential Quadrature and its Application in Engineering, New York, Springer.
[48] Shu C., Du H., 1997, Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates, Journal of Sound and Vibration 34: 819-835.
[49] Kim Y.W., 2005, Temperature dependent vibration analysis of functionally graded rectangular plates, Journal of Sound and Vibration 284(3): 531-549.
[50] Ebrahimi F., Ghasemi F., Salari E., 2016, Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities, Meccanica 51(1): 223-249.
[51] Nguyen D.K., Nguyen Q.H., Tran T.T., Bui V.T., 2017, Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load, Acta Mechanica 228(1): 141-155.