Considering Bending and Vibration of Homogeneous Nanobeam Coated by a FG Layer
Subject Areas : EngineeringH Salehipour 1 , M Jamshidi 2 , A Shahsavar 3
1 - Department of Mechanical Engineering, Ilam University, Ilam 69315-516, Iran
2 - Department of Mechanical Engineering, Ilam University, Ilam 69315-516, Iran
3 - Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran
Keywords:
Abstract :
[1] Iijima S., 1991, Helical Microtubules of Graphitic Carbon, Nature 354: 56-58.
[2] Zhang Y.Y., Wang C. M., Duan W.H., Xiang Y., Zong Z., 2009, Assessment of continuum mechanics models in predicting buckling strains of singlewalled carbon nanotubes, Nanotechnology 20: 395707.
[3] Nix W.D., GAO H., 1998, Indentation size effects in crystalline materials: A law for strain gradient plasticity, Journal of the Mechanics and Physics of Solids 46: 411-425.
[4] Hadjesfandiari A.R., Dargush G.F., 2011, Couple stress theory for solids, International Journal of Solids and Structures 48: 2496-2510.
[5] Asghari M., Kahrobaiyan M.H., Ahmadian M.T., 2010, A nonlinear Timoshenko beam formulation based on the modified couple stress theory, International Journal of Engineering Science 48: 1749-1761.
[6] Ma H.M., GAO X.L., Reddy J.N., 2008, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of Mechanics Physics and Solids 56: 3379-3391.
[7] Reddy J., 2011, Microstructure-dependent couple stress theories of functionally graded beams, Journal of the Mechanics and Physics of Solids 59(11): 2382-2399.
[8] Eringen A.C., 1972, Nonlocal polar elastic continua, International Journal of Engineering Science 10: 1-16.
[9] Eringen A.C., Edelen D.G.B., 1972, On nonlocal elasticity, International Journal of Engineering Science 10: 233-248.
[10] Eringen A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics 54: 4703.
[11] Thai H-T., 2012, A nonlocal beam theory for bending, buckling, and vibration of nanobeams, International Journal of Engineering Science 52: 56-64.
[12] Eringen A.C., 1972, Nonlocal polar elastic continua, International Journal of Engineering Science 10: 1-16.
[13] Eringen A.C., Edelen D.G.B., 1972, On non-local elasticity, International Journal of Engineering Science 10: 230.
[14] Eringen A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics 54: 4703-4710.
[15] Eringen A.C., 2002, Nonlocal Continuum Field Theories, Springer, New York.
[16] Peddieson J., Buchanan G.R., McNitt R.P., 2003, Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science 41: 305-312.
[17] Sudak L.J., 2003, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics, Journal of Applied Physics 94: 7281.
[18] Ece M.C., Aydogdu M., 2007, Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes, Acta Mechanica 190: 185-195.
[19] Lu P., Lee H.P., Lu C., Zhang P.Q., 2007, Application of nonlocal beam models for carbon nanotubes, International Journal Solids and Structures 44: 5289-5300.
[20] Aydogdu M., 2009, Axial vibration of the nanorods with the nonlocal continuum rod model, Physica E 41: 861-864.
[21] Hu Y., Liew K.M., Wang Q., He X.Q., Yakobson B.I., 2008, Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes, Journal of the Mechanics and Physics of Solids 56: 3475-3485.
[22] Sakhaee-Pour A., 2009, Elastic buckling of single-layer grapheme sheet, Computational Materials Science 45: 266-270.
[23] Aydogdu M., 2009, Ageneral nonlocal beam theory: Its application to nanobeam bending, buckling and vibration Physica E 41:1651-1655.
[24] Simsek M., Yurtcu H., 2012, Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory, Composite Structures 97: 378-386.
[25] Byrd L.W., Birman V., 2007, Modeling and analysis of functionally graded materials and structures, Applied Mechanics Reviews 60: 195-216.
[26] Rahmani O., Pedram O., 2014, Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory, International Journal of Engineering Science 77: 55-70.
[27] Ebrahimi F., Rastgoo A., Atai A., 2009, A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate, European Journal of Mechanics-A/Solids 28(5): 962-973.
[28] Ebrahimi F., Naei M.H., Rastgoo A., 2009, Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation, Journal of Mechanical Science and Technology 23(8): 2107-2124.
[29] Ghadiri M., 2017, On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments, Microsystem Technologies 23: 4989-5001.
[30] Shafiei N., Ghadiri M., Mahinzare M., 2017, Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment, Mechanics of Advanced Materials and Structures 26: 139-155.
[31] Reddy J.N., Chin C.D., 1998, Thermomechanical analysis of functionally graded cylinders and plates, Journal of Thermal Stresses 21: 593-626.
[32] Praveen G.N., Reddy J.N., 1998, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, International Journal Solids and Structures 35(33): 4457-4476.
[33] Pisano A.A., Sofi A., Fuschi P., 2009, Nonlocal integral elasticity: 2D finite element based solutions, International Journal of Solids and Structures 46: 3836-3849.
[34] Pisano A.A., Sofi A., Fuschi P., 2009, Finite element solutions for nonhomogeneous nonlocal elastic problems, Mechanics Research Communications 36: 755-761.
[35] Eltaher M.A., Samir A.E., Mahmoud F.F., 2013, Static and stability analysis of nonlocal functionally graded nanobeams, Composite Structures 96: 82-88.
[36] Song M., Yang J., Kitipornchai S., 2018, Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Composites Part B: Engineering 134: 106-113.
[37] Wu H., Kitipornchai S., Yang J., 2017, Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates, Materials& Design 132: 430-441.
[38] Khanchehgardan A., Rezazadeh G., Shabani R., 2013, Effect of mass diffusion on the damping ratio in a functionally graded micro-beam, Composite Structures 106: 15-29.
[39] Zhen W., Wanji C., 2006, A higher-order theory and refined three-node triangular element for functionally graded plates, European Journal of Mechanics-A/Solids 25(3): 447-463.
[40] Reddy J., 2000, Analysis of functionally graded plates, International Journal of Numerical Methods Engineering 47(1-3): 663-684.
[41] Ke L-L., Wang Y-S., Yang J., Kitipornchai S., 2012, Nonlinear free vibration of size-dependent functionally graded microbeams, International Journal of Engineering Science 50(1): 256-267.
[42] Jia X., Ke L., Feng C., Yang J., Kitipornchai S., 2015, Size effect on the free vibration of geometrically nonlinear functionally graded micro-beams under electrical actuation and temperature change, Composite Structures 133: 1137-1148.
[43] Li L., Hu Y., 2017, Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects, International Journal of Mechanical Sciences 120: 159-170.
[44] Chen D., Yang J., Kitipornchai S., 2017, Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams, Composites Science and Technology 142: 235-245.
[45] Arbind A., Reddy J., 2013, Nonlinear analysis of functionally graded microstructure-dependent beams, Composite Structures 98: 272-281.
[46] Reddy J.N., 2011, Microstructure-dependent couple stress theories of functionally graded beams, Journal of the Mechanics and Physics of Solids 59: 2382-2399.
[47] Yang J., Wu H., Kitipornchai S., 2017, Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams, Composite Structures 161: 111-118.
[48] Wu H., Kitipornchai S., Yang J., 2017, Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates, Materials& Design 132: 430-441.
[49] Simsek M., 2015, Size dependent nonlinear free vibration of an axially functionally graded (AFG) microbeam using he’s variational method,. Composite Structures 131: 207-214.
[50] Ke L-L., Yang J., Kitipornchai S., Wang Y-S., 2014, Axisymmetric postbuckling analysis of size-dependent functionally graded annular microplates using the physical neutral plane, International Journal of Mechanical Sciences 81: 66-81.
[51] Ke L-L., Yang J., Kitipornchai S., Bradford M.A., 2012, Bending, buckling and vibration of size-dependent functionally graded annular microplates, Composite Structures 94(11): 3250-3257.
[52] Kitipornchai S., Ke L., Yang J., Xiang Y., 2009, Nonlinear vibration of edge cracked functionally graded timoshenko beams, Journal of Sound and Vibration 324(3): 962-982.
[53] Farokhi H., Ghayesh M.H., Gholipour A., 2017, Dynamics of functionally graded micro-cantilevers, International Journal of Mechanical Sciences 115: 117-130.
[54] Shafiei N., Kazemi M., 2017, Nonlinear buckling of functionally graded nano-/micro-scaled porous beams, Composite Structures 178: 483-492.
[55] Lee J.W., Lee J.Y., 2017, Free vibration analysis of functionally graded bernoulli-euler beams using an exact transfer matrix expression, International Journal of Mechanical Sciences 122: 1-17.
[56] Tianzhi Y., Ye T., Qian L., Xiao-Dong Y., 2018, Nonlinear bending, buckling and vibration of bi directional functionally graded nanobeams, Composite Structures 204: 313-319.
[57] Leissa A.W., 1986, Conditions for laminated plates to remain flat under inplane loading, Composite Structures 6(4): 262-270.
[58] Leissa A.W., 1987, A review of laminated composite plate buckling, Applied Mechanics Reviews 40(5): 575-591.
[59] Qatu M.S., Leissa A.W., 1993, Buckling or transverse deflections of unsymmetrically laminated plates subjected to in-plane loads, AIAA Journal 31(1): 189-194.
[60] Shen H.S., 2004, Bending, buckling and vibration of functionally graded plates and shells, Advances in Mechanics 34(1): 53-60.
[61] Aydogdu M., 2008, Conditions for functionally graded plates to remain flat under inplane loads by classical plate theory, Composite Structures 82: 155-157.
[62] Shen H.S., 2002, Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments, International Journal of Mechanical Sciences 44: 561-584.
[63] Ma L.S., Wang T.J., 2003, Axisymmetric post-buckling of a functionally graded circular plate subjected to uniformly distributed radial compression, Materials Science Forum 423-424:719-724.
[64] Ma L.S., Wang T.J., 2003, Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings, International Journal Solids and Structures 40(13-14): 3311-3330.
[65] Ma L.S., Lee D.W., 2011, A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading, Composite Structures 93: 831-842.
[66] Wang Q., Wang C.M., 2007, The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnology 18: 075702.