Fitness for Service Approach (FFS) in Fatigue Life Prediction for a Spherical Pressure Vessel Containing Cracks
Subject Areas : Mechanical EngineeringJ Jamali 1 , E Mohamadi 2 , T Naraghi 3
1 - Islamic Azad University, Shoushtar Branch, Shoushtar, Iran
2 - Islamic Azad University, Shoushtar Branch, Shoushtar, Iran
3 - Amirkabir University of Technology, Tehran, Iran
Keywords:
Abstract :
[1] Hearn E.J., 1997, Mechanics of Materials, Butterworth-Heinemann.
[2] Ibrahim A., Ryu Y., Saidpour M., 2015, Stress analysis of thin-walled pressure vessels, Modern Mechanical Engineering 5: 1-9.
[3] Matthews C., 2004, Handbook of Mechanical In-Service Inspection: Pressure Systems and Mechanical Plant, John Wiley & Sons.
[4] Folias E.S., 1970, On the theory of fracture of curved sheets, Engineering Fracture Mechanics 21: 51-65.
[5] Folias E.S., 1973, A finite line crack in a pressurized spherical shell, International Journal of Fracture Mechanics 1: 23-32.
[6] Erdogan F., Kibler J.J., 1969, Cylindrical and spherical shell with cracks, International Journal of Fracture Mechanics 5: 229-241.
[7] Wang B., Hu N., 2000, Study of spherical shell with a surface crack by line spring model, Engineering Structures 22: 100-123.
[8] Sun X., Ning J., 1987, Fracture mechanics analysis of spherical shell with surface crack, Theoretical and Applied Fracture Mechanics 7: 189-204.
[9] Choa Y., Chen H., 1989, Stress intensity factors for complete internal and external cracks in spherical shells, Internatinal Journal of Pressure Vessel and Piping 40: 315-330.
[10] Brighenti R., 2000, Surface cracks in shells under different hoop stress distribution, Internatinal Journal of Pressure Vessel and Piping 77: 503-514.
[11] Green D., Knowles J., 1994, The treatment of residual stress in fracture assessment of vessels, Journal of Pressure Vessels and Technology 116: 345-357.
[12] France C., Chivers T., 1994, New stress intensity factors and crack opening area solutions for through-wall cracks in pipes and cylinders, ASME PVP Conference Fatigue and Fracture.
[13] Zang W., 1997, Stress intensity factor solutions for axial and circumferential through-wall cracks in cylinders, SAQ. Report SINTAP/SAQ/02.
[14] Anderson T.L., 2003, Stress intensity and crack growth opening area solutions for through-wall cracks in cylinders and spheres, WRC Bulletin.
[15] Fitness-for-Service, API 579-1/ASME FFS-1, 2007.
[16] Barsom J.M., 1971, Fatigue-crack propagation in steels of various yield strengths, Journal of Engineering for Industry 93(4):1190-1196.
[17] Mehta V.R., 2016, Evaluation of the fracture parameters for SA-516 Grade 70 Material, Journal of Mechanical and Civil Engineering 13(3): 38-45.