Creep Life Assessment of a Super-Heater Tube
Subject Areas : Engineering
1 - Department of Mechanical Engineering, The Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
Keywords:
Abstract :
[1] Jelwan J., Chowdhury M., Pearce G., 2013, Design for creep: a critical examination of some methods, Engineering Failure Analysis 27: 350-372.
[2] Jelwan J., Chowdhury M., Pearce G., 2011, Creep life design criterion and its applications to pressure vessel codes, Materials Physics and Mechanics 11: 157-182.
[3] Zarrabi K., Jelwan J., 2010, A mesoscopic damage model for predicting the plastic-creep life of welded joints subjected to quasi-static loading, Proceedings of ASME IMECE, ASME 2010 International Mechanical Engineering Congress & Exposition, Vancouver, British Columbia, Canada.
[4] Koul A.K., Castillo R., Willett K., 1984, Creep life predictions in nickel-based superalloys, Materials Science and Engineering 66(2): 213-226.
[5] Dyson B., 2000, Use of CDM in materials modeling and component creep life prediction, Journal of Pressure Vessel Technology 122(3): 281-296.
[6] Zhao J., Li D.-M., Fang Y.-Y., 2010, Application of manson-haferd and larson-miller methods in creep rupture property evaluation of heat-resistant steels, Journal of Pressure Vessel Technology 132(6): 064502.
[7] José F., Sobrinhoand dos R., Levi de O.B., 2005, Correlation between creep and hot tensile behaviour for2.25Cr-1Mo steel from 5000C to 7000C, An Assessment According to Different Parameterization Methodologies, Revista Matérial 10(3): 463-471.
[8] Manson S.S., Haferd A.M., 1953, A linear time-temperature relation for extrapolation of creep and stress-rupture data, NASA-TN-2890.
[9] Dorn J.E., 1955, Some fundamental experiments on high temperature creep, Journal of the Mechanics and Physics of Solids 3(2): 85-88.
[10] Wilshire B., Evans R.W., 1994, Acquisition and analysis of creep data, The Journal of Strain Analysis for Engineering Design 29(3): 159-165.
[11] English R.E., 1991, 9th Symposium on Space Nuclear Power Systems, Albuqerque.
[12] Brozzo P., 1963, A method for the extrapolation of creep and stress‐rupture data of complex alloys, Proceedings of the Institution of Mechanical Engineers 178(31): 77-85.
[13] Woo G.K., Nam S.Y., Woo S. R., 2005, Application and standard error analysis of the parametric methods for predicting the creep life of type 316LN SS, Key Engineering Materials 297-300: 2272-2277.
[14] Larke E.C., Inglis N.P., 1963, A critical examination of some methods of analysing and extrapolating stress‐rupture data, Proceedings of the Institution of Mechanical Engineers 178(31): 33-47.
[15] Seruga D., Nagode M., 2011, Unification of the most commonly used time-temperature creep parameters, Materials Science and Engineering: A 528(6): 2804-2811.
[16] Monkman F.C. , Grant N.J. , 1956, Lifetime prediction under constant load creep conditions for a cast ni-base superalloy, Proceedings ASTM 56: 593.
[17] ASTM E8 / E8M-13, 2013, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken.
[18] Maruyama K., Sawada K., Koike J., Sato H., Yagi K., 1997, Examination of deformation mechanism maps in 2.25Cr—1Mo steel by creep tests at strain rates of 10−11 to 10−6 s−1, Materials Science and Engineering: A 224(1–2): 166-172.
[19] Parker J.D., Parsons A.W.J., 1995, High temperature deformation and fracture processes in 214Cr1Mo-12Cr12Mo14V weldments, International Journal of Pressure Vessels and Piping 63(1): 45-54.
[20] Ray A.K., Tiwari Y.N., Roy P.K., Chaudhuri S., Bose S.C., Ghosh R.N., Whittenberger J.D., 2007, Creep rupture analysis and remaining life assessment of 2.25Cr–1Mo steel tubes from a thermal power plant, Materials Science and Engineering: A 454–455: 679-684.
[21] Bueno Levi de O., Vitor Luiz S., Marino L., 2005, Constant load creep data in air and vacuum on 2.25Cr-1Mo steel from 600 °C to 700 °C, Materials Research 8(4): 401-408.
[22] Choudhary B.K., Isaac Samuel E., 2011, Creep behaviour of modified 9Cr–1Mo ferritic steel, Journal of Nuclear Materials 412(1): 82-89.
[23] ASME Boiler and Pressure Vessel Code, Section VIII, Division 1 and Section III, Division 1, Subsection NH, Class I Components in Elevated Temperatures Service, 2001.
[24] Jelwan J. 2017, Prediction of creep rupture in 2.25Cr–1Mo notched bars, Journal of Applied Mechanics and Technical Physics 58(1): 129-138.
[25] Dimmler G., Weinert P., Cerjak H., 2008, Extrapolation of short-term creep rupture data--The potential risk of over-estimation, International Journal of Pressure Vessels and Piping 85(1-2): 55-62.
[26] Evans M., 1999, Further analysis of the Monkman-Grant relationship for 2.25Cr-1Mo steel using creep data from the national research institute for metals, Advances in Physical Metallurgy 15(1): 91-100.
[27] Nickel H., Ennis P.J., Quadakkers W.J., 2001, The creep rupture properties of 9% chromium steels and the influence of oxidation on strength, Mineral Processing and Extractive Metallurgy Review: An International Journal 22(1): 181 - 195.