Buckling and Thermomechanical Vibration Analysis of a Cylindrical Sandwich Panel with an Elastic Core Using Generalized Differential Quadrature Method
Subject Areas : Mechanical EngineeringA.R Pourmoayed 1 , K Malekzadeh 2 , M Shahravi 3 , H Safarpour 4
1 - Department of Mechanical Engineering, Khatamul-Anbiya Air Defense University, Tehran, Iran
2 - Faculty of Structural Analysis and Simulation Centre, MalekAshtar University,Tehran, Iran
3 - Faculty of Structural Analysis and Simulation Centre, MalekAshtar University,Tehran, Iran
4 - Department of Mechanics, Imam Khomeini International University, Qazvin, Iran
Keywords:
Abstract :
[1] Lim C., Ma Y., Kitipornchai S., Wang C., Yuen R., 2003, Buckling of vertical cylindrical shells under combined end pressure and body force, Journal of Engineering Mechanics 129: 876-884.
[2] Librescu L., Marzocca P., 2003, Thermal Stresses, Virginia Polytechnic Institute and State University, Blacksburg.
[3] Noor A. K., Burton W. S., 1992, Computational models for high-temperature multilayered composite plates and shells, Applied Mechanics Reviews 45: 419-446.
[4] Lam K., Loy C., 1995, Effects of boundary conditions on frequencies of a multi-layered cylindrical shell, Journal of Sound and vibration 188: 363-384.
[5] Li X., Chen Y., 2002, Transient dynamic response analysis of orthotropic circular cylindrical shell under external hydrostatic pressure, Journal of Sound and Vibration 257: 967-976.
[6] Loy C., Lam K., 1999, Vibration of thick cylindrical shells on the basis of three-dimensional theory of elasticity, Journal of Sound and Vibration 226: 719-737.
[7] Young P., 2000, Application of a three-dimensional shell theory to the free vibration of shells arbitrarily deep in one direction, Journal of Sound and Vibration 238: 257-269.
[8] Shariyat M., 1997, Elastic, plastic, and creep buckling of imperfect cylinders under mechanical and thermal loading, Journal of Pressure Vessel Technology 119: 27-36.
[9] Eslami M., Ziaii A., Ghorbanpour A., 1996, Thermoelastic buckling of thin cylindrical shells based on improved stability equations, Journal of Thermal Stresses 19: 299-315.
[10] Radhamoman S., Enkataramana J., 1975,Thermal buckling of orthotropic cylindrical shells, AIAA Journal 13: 397-399.
[11] Alibeigloo A., 2014, Three-dimensional thermo-elasticity solution of sandwich cylindrical panel with functionally graded core, Composite Structures 107: 458-468.
[12] Thangaratnam R. K., Palaninathan R., Ramachandran J., 1990,Thermal buckling of laminated composite shells, AIAA Journal 28: 859-860.
[13] Bert C., 1993, Buckling and post-buckling of composite plates and shells subjected to elevated temperature, Journal of Applied Mechanics 60(2): 514-519.
[14] Mohammad-Abadi M., Daneshmehr A., 2015, Modified couple stress theory applied to dynamic analysis of composite laminated beams by considering different beam theories, International Journal of Engineering Science 87: 83-102.
[15] Dumir P., Nath J., Kumari P., Kapuria S., 2008, Improved efficient zigzag and third order theories for circular cylindrical shells under thermal loading, Journal of Thermal Stresses 31: 343-367.
[16] Kant T., Khare R., 1994, Finite element thermal stress analysis of composite laminates using a higher-order theory, Journal of Thermal stresses 17: 229-255.
[17] Khdeir A., Rajab M., Reddy J., 1992, Thermal effects on the response of cross-ply laminated shallow shells, International Journal of Solids and Structures 29: 653-667.
[18] Khare R. K., Kant T., Garg A. K., 2003, Closed-form thermo-mechanical solutions of higher-order theories of cross-ply laminated shallow shells, Composite Structures 59: 313-340.
[19] Sheng G., Wang X., 2007, Effects of thermal loading on the buckling and vibration of ring-stiffened functionally graded shell, Journal of Thermal Stresses 30: 1249-1267.
[20] Sheng G., Wang X., 2010, Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells, Applied Mathematical Modelling 34: 2630-2643.
[21] Shiau L.-C., Kuo S.-Y., 2004, Thermal postbuckling behavior of composite sandwich plates, Journal of Engineering Mechanics 130: 1160-1167.
[22] Jeng-Shian C., 1990, FEM analysis of buckling and thermal buckling of antisymmetric angle-ply laminates according to transverse shear and normal deformable high order displacement theory, Computers & Structures 37: 925-946.
[23] Rao K. M., 1985, Buckling analysis of anisotropic sandwich plates faced with fiber-reinforced plastics, AIAA Journal 23: 1247-1253.
[24] Noor A. K., Starnes Jr J. H., Peters J. M., 1997, Curved sandwich panels subjected to temperature gradient and mechanical loads, Journal of Aerospace Engineering 10: 143-161.
[25] Chang C.-C., 2012, Thermoelastic behavior of a simply supported sandwich panel under large temperature gradient and edge compression, Journal of the Aerospace Sciences 2012: 480.
[26] Huang H., 2003, The initial post-buckling behavior of face-sheet delaminations in sandwich composites, Journal of Applied Mechanics 70: 191-199.
[27] Huang H., Kardomateas G. A., 2002, Buckling and initial postbuckling behavior of sandwich beams including transverse shear, AIAA Journal 40: 2331-2335.
[28] Frostig Y., Thomsen O. T., 2008, Non-linear thermal response of sandwich panels with a flexible core and temperature dependent mechanical properties, Composites Part B: Engineering 39: 165-184.
[29] Khalili S., Mohammadi Y., 2012, Free vibration analysis of sandwich plates with functionally graded face sheets and temperature-dependent material properties: A new approach, European Journal of Mechanics-A/Solids 35: 61-74.
[30] Leonenko D., Starovoitov E., 2016, Vibrations of cylindrical sandwich shells with elastic core under local loads, International Applied Mechanics 52: 359-367.
[31] Malekzadeh F. K., Malek M. H., 2017, Free vibration and buckling analysis of sandwich panels with flexible cores using an improved higher order theory, Journal of Solid Mechanics 9(1): 39-53.
[32] Jabbari M., Zamani N. M., Ghannad M., 2017, Stress analysis of rotating thick truncated conical shells with variable thickness under mechanical and thermal loads, Journal of Solid Mechanics 9(1): 100-114.
[33] Saviz M., 2016, Coupled vibration of partially fluid-filled laminated composite cylindrical shells, Journal of Solid Mechanics 8: 823-839.
[34] Golpayegani I. F., 2018, Calculation of natural frequencies of bi-layered rotating functionally graded cylindrical shells, Journal of Solid Mechanics 10: 216-231.
[35] Saadatfar M., Aghaie K. M., 2015, On the magneto-thermo-elastic behavior of a functionally graded cylindrical shell with pyroelectric layers featuring interlaminar bonding imperfections rested in an elastic foundation, Journal of Solid Mechanics 7(3): 344-363.
[36] Ghasemi A., Hajmohammad M., 2017, Evaluation of buckling and post buckling of variable thickness shell subjected to external hydrostatic pressure, Journal of Solid Mechanics 9: 239-248.
[37] Hosseini-Hashemi S., Abaei A., Ilkhani M., 2015, Free vibrations of functionally graded viscoelastic cylindrical panel under various boundary conditions, Composite Structures 126: 1-15.
[38] Thinh T. I., Nguyen M. C., Ninh D. G., 2014, Dynamic stiffness formulation for vibration analysis of thick composite plates resting on non-homogenous foundations, Composite Structures 108: 684-695.
[39] Tauchert T. R., 1974, Energy Principles in Structural Mechanics, McGraw-Hill Companies.
[40] Reddy J. N., 2004, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
[41] Ghadiri M., SafarPour H., 2017, Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment, Journal of Thermal Stresses 40: 55-71.
[42] Bellman R., Casti J., 1971, Differential quadrature and long-term integration, Journal of Mathematical Analysis and Applications 34: 235-238.
[43] Bellman R., Kashef B., Casti J., 1972, Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, Journal of Computational Physics 10: 40-52.
[44] Shu C., 2012, Differential Quadrature and its Application in Engineering, Springer Science & Business Media.
[45] Shu C., Richards B. E., 1992, Application of generalized differential quadrature to solve two‐dimensional incompressible Navier‐Stokes equations, International Journal for Numerical Methods in Fluids 15: 791-798.
[46] Loy C., Lam K., Shu C., 1997, Analysis of cylindrical shells using generalized differential quadrature, Shock and Vibration 4: 193-198.
[47] Loy C., Lam K., Reddy J., 1999, Vibration of functionally graded cylindrical shells, International Journal of Mechanical Sciences 41: 309-324.
[48] Matsunaga H., 2009, Free vibration and stability of functionally graded circular cylindrical shells according to a 2D higher-order deformation theory, Composite Structures 88: 519-531.
[49] Rabani Bidgoli M., Saeed Karimi M., Ghorbanpour Arani A., 2016, Nonlinear vibration and instability analysis of functionally graded CNT-reinforced cylindrical shells conveying viscous fluid resting on orthotropic Pasternak medium, Mechanics of Advanced Materials and Structures 23: 819-831.