State Space Approach to Electro-Magneto-Thermoelasticity with Energy Dissipation
Subject Areas : Engineering
1 - Department of Mathematics, University of North Bengal, Darjeeling-734013, India
2 - Department of Computer Science, Faculty of Computers and Information, Luxor University, Egypt--
Department of Mathematics, Faculty of Science, South Valley University, Egypt
Keywords:
Abstract :
[1] Biot M., 1956, Thermoelsticity and irreversible thermodynamics, Journal of Applied Physics 27: 240-253.
[2] Lord H., Shulman Y., 1967, A generalized dynamic theory of thermoelasticity, Journal of the Mechanics & Physics of Solids 15: 299-309.
[3] Green A.E., Lindsay K.A., 1972, Thermoelasticity, Journal of Elasticity 2: 1-7.
[4] Green A.E., Naghdi P.M., 1991, A re-examination of the basic properties of thermomechanics, Proceedings of Royal Society London Series A 432: 171-194.
[5] Green A.E., Naghdi P.M., 1992, On damped heat waves in an elastic solid, Journal of Thermal Stresses 15: 252-264.
[6] Green A.E., Naghdi P.M., 1993, Thermoelasticity without energy dissipation, Journal of Elasticity 31: 189-208.
[7] Chandrasekharaih D.S., 1998, Hyperbolic thermoelasticity: A review of recent literature, Applied Mechanics Reviews 51(12): 705-729.
[8] Bahar L.Y., Hetnarski R.B., 1978, State space approach to thermoelasticity, Journal of Thermal Stresses 1: 135-145.
[9] Anwar M., Sherief H., 1988, State space approach to generalized thermoelasticity, Journal of Thermal Stresses 11: 353-365.
[10] Ezzat M.A., Zakaria M., El‐Bary A.A., 2010, Thermo‐electric‐visco‐elastic material, Journal of Applied Polymer Science 117 (4): 1934-1944.
[11] Ezzat M.A., El Bary A.A., El Karamany A.S., 2009, Two-temperature theory in generalized magneto-thermo-viscoelasticity, Canadian Journal of Physics 87(4): 329-336.
[12] Ezzat M.A., El-Karamany A.S., El-Bary A.A., 2015, On thermo-viscoelasticity with variable thermal conductivity and fractional-order heat transfer, International Journal of Thermophysics 36(7): 1684-1697.
[13] Ezzat M.A., El-Bary A.A., 2016, Magneto-thermoelectric viscoelastic materials with memory-dependent derivative involving two-temperature, International Journal of Applied Electromagnetics and Mechanics 50: 549-567.
[14] Ezzat M.A., El-Bary A.A., 2017, Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories, Steel and Composite Structures 24(3): 297-307.
[15] Ezzat M.A., El-Bary A.A., 2014, Two-temperature theory of magneto-thermo-viscoelasticity with fractional derivative and integral orders heat transfer, Journal of Electromagnetic Waves and Applications 28(16): 1985-2004.
[16] Ezzat M. A., El-Karamany A.S., El-Bary A.A., 2017, On dual-phase-lag thermoelasticity theory with memory-dependent derivative, Mechanics of Advanced Materials and Structures 24(11): 908-916.
[17] Ezzat M.A. , El-Karamany A.S., El-Bary A.A., 2018, Two-temperature theory in Green–Naghdi thermoelasticity with fractional phase-lag heat transfer, Microsystem Technologies 24(2): 951-961.
[18] El-Karamany A.S., Ezzat M.A., 2004, Thermal shock problem in generalized thermoelasticity under four theories, International Journal of Engineering Science 42: 649-671.
[19] Sherief H.H., El-Maghraby N.M., Allam A.A., 2013, Stochastic thermal shock in generalized thermoelasticity, Applied Mathematical Modelling 37: 762-775.
[20] Ezzat, M. A. and H. M. Youssef. 2010. Three dimensional thermal shock problem of generalized thermoelastic half-space, Applied Mathematical Modelling 34: 3608-3622.
[21] Wang Y.Z., Liu D., Wang Q., Zhou J. Z., 2016, Thermoelastic behavior of elastic media with temperature-dependent properties under thermal shock, Journal of Thermal Stresses 39(4): 460-473.
[22] Baksi A., Bera R.K., Debnath L., 2005, A study of magneto-thermoelastic problems with thermal relaxation and heat sources in a three dimensional infinite rotating elastic medium, International Journal of Engineering Science 43(19-20): 1419-1434.
[23] Said S.M., 2016, Influence of gravity on generalized magneto-thermoelastic medium for three-phase -lag model, Journal of Computational and Applied Mathematics 291: 142-157.
[24] Kalkal K.K., Deswal S., 2014, Effects of phase lags on three dimensional wave propagation with temperature dependent properties, International Journal of Thermophysic 35(5): 952-969.
[25] Youssef H.M., El-Bary A.A., Elsibai K.A., 2014, Vibration of gold nano beam in context of two-temperature generalized thermoelasticity subjected to laser pulse, Latin American Journal of Solids and Structures 11(13): 2460-2482.
[26] Pramanik A.S., Biswas S., 2020, Surface waves in nonlocal thermoelastic medium with state space approach, Journal of Thermal Stresses 43(6): 667-686.