The effect of two environment water - moss and peat moss soil on the number of cocoons, the weight of the cocoon and the number of casualties of oriental leech (Hirudo orientalis).
Subject Areas :Hamidreza Bidmal 1 , mohammad Sodagar 2
1 - دانشکده شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 - Associate Professor. Department of Aquaculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
Keywords: oriental leeches, casualties, cocooning, Water-moss, peat moss soil,
Abstract :
Background: In recent years, leeches have been used to treat some diseases, extract many enzymes and substances that are effective in treating diseases.This study aims to influence the two environments of water-moss and peat moss soil on the number of cocoons, the weight of the cocoons and the losses in the oriental leech. Method: For this purpose, 300 productive leeches for 45 days in 6 treatments and 3 repetitions per treatment: treatment (1) 10 leeches in water-moss, treatment (2) 15 leeches, treatment (3) 25 pieces Leeches, treatment (4) 10 pieces of leeches in Peat mosss, treatment (5) 15 pieces of leeches, treatment (6) 25 pieces of leeches. Reproductive leeches were kept in a water-moss environment in tanks containing 50 liters of chlorine-free water at 28-27°c. The mosses were controlled and sprayed twice a week, and the cocoons inside the mosses were collected and stored at 25°c. Productive leeches were kept in a 10-liter plastic container in the soil of Peat mosss. The peat moss soil was inspected 3 times a week and sprayed to retain moisture, and cocoons were collected inside the moss soil and stored at 25 °c in the peat moss soil. Results: The results showed that the number of cocoons produced in water-moss and paet moss soil did not differ significantly (p <0.05). The weight of the cocoons produced in the two environments did not differ significantly (p <0.05). Also, the number of casualties of productive leeches in the two environments showed no significant cifference (p <0.05).
.Abnosi, M.H., Golami, S. (2017). Cadmium chloride treatment of rats significantly impairs membrane integrity of mesenchymal stem cells via electrolyte imbalance and lipid peroxidation, a possible explanation of Cd related osteoporosis. Iran J Basic Med Sci, 20(3); 280-287.
2.Al-Attar, A.M. (2012). Attenuating effect of Ginkgo biloba leaves extract on liver fibrosis induced by thioacetamide in mice. J Biomed Biotechnol, 2012; 761450.
3.Ali, F., Rahul., Naz, F, Jyoti, S, Siddique, Y.H. (2014). Protective effect of apigenin against N-nitroso di ethyl amine (NDEA)-induced hepatotoxicity in albino rats. Mutat Res Genet Toxicol Environ Mutagen, 767; 13-20.
4.Alkiyumi, S.S., Abdullah, M.A., Alrashdi, A.S., Salama, S.M., Abdelwahab, S.I., Hadi, A.H. (2012). Ipomoea aquatica extract shows protective action against thioacetamide-induced hepatotoxicity. Molecules, 17(5); 6146-55.
5.An, F., Yang, G., Tian, J., Wang, S. (2012). Antioxidant effects of the orientin and vitexin in Trolliuschinensis Bunge in D-galactose-aged mice. Neural Regen Res, 7(33); 2565-75.
6.Anzoise, M.L., Marrassini, C., Bach, H., Gorzalczany, S. (2016). Beneficial properties of Passifloracaerulea on experimental colitis. J Ethnopharmacol, 194; 137-145.
7.Balta, C., Herman, H., Boldura, O.M., Gasca, I., Rosu, M., Ardelean, A. (2015). Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway. Chem Biol Interact, 240; 94-101.
8.Bataller, R., Brenner, D.A. (2005). Liver fibrosis . J Clin Invest, 115(2); 209-18.
9.Braga, A., Stein, A.C., DischkalnStolz, E., Dallegrave, E., Buffon, A., do Rego, J.C., et al. (2013). Repeated administration of an aqueous spray-dried extract of the leaves of Passifloraalata Curtis (Passifloraceae) inhibits body weight gain without altering mice behavior. J Ethnopharmacol, 145(1); 59-66.
10.Deveci, E., Deveci, S. (2011). The effects of cadmium chloride on the oesophagus of rats. Int J Morphol, 29; 678-80.
11.Dhawan, K., Kumar, S., Sharma, A. (2001). Comparative biological activity study on Passiflora caerulea and P. edulis. Fitoterapia, 72(6); 698-702.
12.Domitrović, R., Jakovac, H., Grebić, D., Milin, C., Radosević-Stasić, B. (2008). Dose- and time-dependent effects of luteolin on liver metallothioneins and metals in carbon tetrachloride-induced hepatotoxicity in mice. Biol Trace Elem Res, 126(1-3); 176-85.
13.Feliú-Hemmelmann, K., Monsalve, F., Rivera, C. (2013). Melissa officinalis and Passiflora caerulea infusion as physiological stress decreaser. Int J Clin Exp Med, 6(6); 444-51.
14.He LZMeng, Y.K., Han, Y.Z., Zhang, Z.F., Yin, P., Sang, X.X., Xiao, X.H. (2016). Protective effects of luteolin against acetaminophen-induced damage in L02 liver cells. ZhongguoZhong Yao ZaZhi, 41(22); 4234-4239.
15.Jung, U.J., Cho, Y.Y., Choi, M.S. (2016). Apigenin ameliorates dyslipidemia, hepatic steatosis and insulin resistance by modulating metabolic and transcriptional profiles in the liver of high-fat diet-induced obese mice. Nutrients, 8(5); 305.
16.Khare, P., Verma, S., Khare, N., Yadav, G. (2015). Investigation of hepatoprotective activity of passifloran epalensis. Int J Pharmacol, 9(3); 256-259.
17.Lee, W., Bork, U., Thevenod, F. (2004). Mitochondria as a target of cadmium nephrotoxocity: Induction of swelling andcytochrome C release. Toxical Mech Methods, 14(1-2); 67-71.
18.Liu, G., Zhang, Y., Liu, C., Xu, D., Zhang, R., Cheng, Y. (2014). Luteol in alleviates alcoholic liver disease induced by chronic and binge ethanol feeding in mice. J Nutr, 144(7); 1009-15.
19.Nandy, S., Paul, H.S., Kar, P.K. (2012). Determination of in vitro antioxidant activity of Passiflora nepalensis Fruit extract. Am J Pharm Tech Res, 2;3-12.
20.Patel, S.S., Saleem, T.S., Ravi, V. (2009). Passiflorain carnata Linn: A phyto pharma cological review. International Journal of Green Pharmacy, 3(4); 277-280.
21.Pushpavalli, G., Kalaiarasi, P., Veeramani, C., Pugalendi, K.V. (2010). Effect of chrysin on hepatoprotective and antioxidant status in D-galactosamine-induced hepatitis in rats. Eur J Pharmacol, 631(1-3); 36-41.
22.Raju, S.B.G., Battu, R.G., Manju latha, Y.B., Srinivas, K. (2012). Antihepatotoxic activity of smilax china roots on CCL4 induced hepatic damage in rats. Int J Pharm Pharm Sci, 4(1); 494-496.
23.Rašković, A., Gigov, S., Čapo, I., PautKusturica, M., Milijašević, B., Kojić-Damjanov, S. (2017). Antioxidative and protective actions of apigenin in a paracetamol-induced hepatotoxicity rat Model. Eur J Drug Metab Pharmacokinet, 42(5); 849-856.
24.Rehman, M.U., Ali, N., Rashid, S., Jain, T., Nafees, S., Tahir, M. (2014). Alleviation of hepatic injury by chrysin in cisplatin administered rats: probable role of oxidative and inflammatory markers. Pharmacol Rep, 66(6); 1050-9.
25.Robarts, K., Worsfold, P. (1991). Cadmium: toxicology and analysis, a review. Analyst, 116; 549-568.
26.Sakihama, Y., Cohen, M.F., Grace, S.C., Yamasaki, H. (2002). Plant phenolic antioxidant and prooxidant activities: phenolicsinduced oxidative damage mediated by metals in plants. Toxicology, 177; 67-80.
27.Sathiavelu, J., Senapathy, G.J., Devaraj, R., Namasivayam, N. (2009). Hepatoprotective effect of chrysin on prooxidant-antioxidant status during ethanol-induced toxicity in female albino rats. J Pharm Pharmacol, 61(6); 809-17.
28.Shanmugam, S., Sivaraj, D., Dos Santos Lima, B., Dos Passos Menezes, P., de Carvalho Y.M.B.G. (2017). Polyphenols rich Passiflora leschenaultii leaves modulating farnesoid x receptor and pregnane x receptor against paracetamol-induced hepatotoxicity in rats. Biomed Pharmacother, 88; 1114-1121.
29.Shanmugam, S., Thangaraj, P., Lima, B.D.S., Chandran, R., de Souza Araújo, A.A., Narain, N. (2016). Effects of luteolin and quercetin 3-β-d-glucoside identified from Passiflora subpeltata leaves against acetaminophen induced hepatotoxicity in rats. Biomed Pharmacother, 83; 1278-1285.
30.Sharma, P., Prakash, O., Shukla, A., Rajpurohit, C.S., Vasudev, P.G., Luqman, S. (2016). Structure-activity relationship studies on holy basil (Ocimum sanctum L.) based flavonoid orient in and its analogue for cytotoxic activity in liver cancer cell line HepG2. Comb Chem High Throughput Screen, 19(8); 656-666.
31.Speroni, E., Billi, R., Pellegrino, N.C., Minghetti, A. (1996). A role of chrysin in the sedative effects of Passiflora caerulea. Phytother Res, 10; 98-100.
32.Tai, M., Zhang, J., Song, S., Miao, R., Liu, S., Pang, Q. (2015). Protective effects of luteol in against acetaminophen-induced acute liver failure in mouse. Int Immunopharmacol, 27(1); 164-70.
33.Tsaroucha, A.K., Tsiaousidou, A., Ouzounidis, N., Tsalkidou, E., Lambropoulou, M., Giakoustidis, D. (2016). Intraperitoneal administration of apigenin in liver ischemia/reperfusion injury protective effects. Saudi J Gastroenterol, 22(6); 415-422.
34.Uma Devi, P., Ganasoundari, A., Vrinda, B., Srinivasan, K.K., Unnikrishnan, M.K. (2000). Radiation protection by the ocimum flavonoids orientin and vicenin: mechanisms of action. Radiat Res, 154(4): 455-60.
35.Vargas, A.J., Geremias, D.S., Provensi, G., Fornari, P.E., Reginatto, F.H., Gosmann, G. (2007). Passiflora alata and Passiflora edulis spray-dried aqueous extracts inhibit inflammation in mouse model of pleurisy. Fitoterapia, 78(2): 112-9.
36.Verma, S., Patel, S.S., Khare, P. (2014). A Study on Pharmacognostical phytochemical evaluationof leaves of Passifloran epalensis wall. Int J Pharmacol, 8(2); 170-175.
37.Wang, F., Liu, J.C., Zhou, R.J., Zhao, X., Liu, M., Ye, H. (2017). Apigenin protects against alcohol-induced liver injury in mice by regulating hepatic CYP2E1-mediated oxidative stress and PPARα-mediated lipogenic gene expression. Chem Biol Interact, 275; 171-177.
38.Wang, S.H., Shih, Y.L., Lee, C.C., Chen, W.L ., Lin, C.J., Lin, Y.S. (2009). The role of endoplasmic reticulum in cadmium-induced mesangial cell apoptosis. Chem Biol Interact, 181(1); 45-51.
39.Yang, J., Wang, X.Y., Xue,, J., Gu, Z.L., Xie, M.L. (2013). Protective effect of apigenin on mouse acute liver injury induced by acetaminophen is associated with increment of hepatic glutathione reductase activity. Food Funct, 4(6); 939-43.
40.Zhang, H., Tan, X., Yang, D., Lu, J., Liu,, B., Baiyun, R. (2017). Dietary luteol in attenuates chronic liver injury induced by mercuric chloride via the Nrf2/NF-κB/P53 signaling pathway in rats. Oncotarget, 8(25); 40982-40993.
41.Zhou, R.J., Ye, H., Wang, F., Wang, J.L., Xie, M.L. (2017). Apigenin inhibits d-galactosamine/LPS-induced liver injury through upregulation of hepatic Nrf-2 and PPARγ expressions in mice. Biochem Biophys Res Commun, 493(1); 625-630
_||_