A Survey on Applications of Machine Learning in Bioinformatics and Neuroscience
Subject Areas : Majlesi Journal of Telecommunication DevicesNarges Habibi 1 , Shahla Mousavi 2
1 - Khorasgan Branch, Islamic Azad University
2 - Khorasgan Branch, Islamic Azad University
Keywords:
Abstract :
[1] N. M. Luscombe, D. Greenbaum, M. Gerstein, “What is bioinformatics? A proposed definition and overview of the field,” Methods of Information in Medicine, Vol. 40, No. 4, pp. 346–358, 2001.
[2] J. C. Venter, M. D. Adams, E. W. Myers, P. Li, R. J. Mural, G. G. Sutton, J. D. Gocayne, “The sequence of the human genome,” Science, Vol. 291, pp. 1304–1351, 2001.
[3] A. Ansel, J. P. Rosenzweig, P. D. Zisman, M. Melamed, B. Gesundheit, “Variation in gene expression in autism spectrum disorders: An extensive review of transcriptomic studies,” Frontiers in Neuroscience, Vol. 10, pp. 601-610, 2016.
[4] I. Hunt, “From gene to protein: A review of new and enabling technologies for multi-parallel protein expression,” Protein Expression and Purification, Vol. 40, No. 1, pp. 1–22, 2005.
[5] T. Ideker, T. Galitski, L. Hood, “A new approach to decoding life: Systems biology,” Annual Review of Genomics and Human Genetics, Vol. 2, No. 1, pp. 343–372, 2001.
[6] H. Kitano, “Systems biology: A brief overview,” Science, Vol. 295, No. 5560, pp. 1662–1664, 2002.
[7] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A review of classification techniques,” In Proc. of the conference on Emerging artificial intelligence applications in computer engineering: real word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies, pp. 3-24, 2007.
[8] X. Wang, H. Li, Q. Zhang, R. Wang, “Predicting subcellular localization of apoptosis proteins combining GO features of homologous proteins and distance weighted knn classifier,” BioMed Research International, pp. 1-12, 2016.
[9] M. Hajighorbani, S. M. R. Hashemi, B. Minaei-Bidgoli, S. Safari, “A review of some semi-supervised learning methods,” In proc. of IEEE First International Conference on New Research Achievements in Electrical and Computer Engineering, Tehran, 2016.
[10] S. Rathore, M. Habes, M. A. Iftikhar, A. Shacklett, C. Davatzikos, “A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages,” NeuroImage, Vol. 155, pp. 530–548, 2017.
[11] X. Rui, D. C. Wunsch, “Clustering algorithms in biomedical research: A review,” IEEE Reviews in Biomedical Engineering, Vol. 3, pp. 120–154, 2010.
[12] Y. Saeys, I. Inza, P. Larrañaga, “A review of feature selection techniques in bioinformatics,” Bioinformatics, Vol. 23, No. 19, pp. 2507–2517, 2007
[13] A. Hyvärinen, E. Oja, “Independent component analysis: Algorithms and applications,” Neural Networks, Vol. 13, No. 4, pp. 411–430, 2000.
[14] I. K. Fodor, “A survey of dimension reduction techniques,” Lawrence Livermore National Lab, Livermore, CA. pp.1-34, 2002.
[15] Y. Garcia-Chimeno, B. Garcia-Zapirain, M. Gomez-Beldarrain, B. Fernandez-Ruanova, J. C. Garcia-Monco, “Automatic migraine classification via feature selection committee and machine learning techniques over imaging and questionnaire data,” BMC Medical Informatics and Decision Making, Vol. 17, No. 1, pp. 38-42, 2017.
[16] N. Shuke, “Voxel-based control database generated from clinical fdg pet data for statistical analysis of brain fdg pet: Comparison with subject-based normal database,” Journal of Nuclear Medicine, Vol. 58, pp. 1257–1257, 2017.
[17] A. Wang, N. An, J. Yang, G. Chen, L. Li, G. Alterovitz, “Wrapper-based gene selection with markov blanket,” Computers in Biology and Medicine, Vol. 81, pp. 11–23, 2017.
[18] Z. Zhu, Y. S. Ong, M. Dash, “Markov blanket-embedded genetic algorithm for gene selection,” Pattern Recognition, Vol. 40, No. 11, pp. 3236–3248, 2007.
[19] D. Heider, N. Genze, U. Neumann, “Efs: An ensemble feature selection tool implemented as r-package and web-application,” BioData Mining, Vol. 10, No. 1, pp. 21-30, 2017.
[20] H. Polat, H. D. Mehr, A. Cetin, “Diagnosis of chronic kidney disease based on support vector machine by feature selection methods,” Journal of Medical Systems, Vol. 41, No. 4, pp. 55-59, 2017.
[21] M. S. Hannah-Immanuel, S. G. Jacob, “Feature selection techniques for Alzheimer’s disease: A review,” International Journal of Engineering Technology Science and Research, Vol. 4, No. 7, pp. 494–49, 2017.
[22] V. Fortino, P. Kinaret, N. Fyhrquist, H. Alenius, D. Greco, “A robust and accurate method for feature selection and prioritization from multi-class omics data,” PLoS One, Vol. 9, pp. e107801, 2014.
[23] R. Díaz-Uriarte, S. A. De Andres, “Gene selection and classification of microarray data using random forest,” BMC Bioinformatics, Vol. 7, No. 1, pp. 3-12, 2006.
[24] H. Yu, S. Hong, X. Yang, J. Ni, Y. Dan, B. Qin, “Recognition of multiple imbalanced cancer types based on DNA microarray data using ensemble classifiers,” BioMed Research International, Vol. 2013, pp. 1–13, 2013.
[25] L. Kruglyak, D. A. Nickerson, “Variation is the spice of life,” Nature Genetics, Vol. 27, No. 3, pp. 234–236, 2001
[26] T. Charlon, M. Martínez-Bueno, L. Bossini-Castillo, F. David Carmona, A. Di Cara, J. Wojcik, M. E. Alarcón-Riquelme, “Single nucleotide polymor- phism clustering in systemic autoimmune diseases,” PloS One, Vol. 11, No. 8, pp. e0160270, 2016
[27] F. De Martino, F. Gentile, F. Esposito, M. Balsi, F. Di Salle, R. Goebel, E. Formisano, “Classification of fmri independent components using ic-fingerprints and support vector machine classifiers,” NeuroImage, Vol. 34, No. 1, pp. 177–194, 2007
[28] E. Formisano, F. Esposito, N. Kriegeskorte,
[29] M. J. McKeown, S. Makeig, G. G. Brown, T. Jung, S. S. Kindermann, A. J. Bell, T. J. Sejnowski, “Analysis of fMRI data by blind separation into independent spatial components,” Naval Health Research Center, San Diego, CA, 1997.
[30] G. Tedeschi, F. Di-Salle, R. Goebel, “Spatial independent component analysis of functional magnetic reso- nance imaging time-series: Characterization of the cortical components,” Neurocomputing, Vol. 49, No. 1, pp. 241–254, 2002.
[31] H. Shen, L. Wang, Y. Liu, D. Hu, “Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embed- ding of fMRI,” NeuroImage, Vol. 49, No 4, pp. 3110–3121, 2020.
[32] S. T. Roweis, L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science, Vol. 290, No. 5500, pp. 2323–2326, 2000
[33] A. Delcher, “Improved microbial gene identification with glimmer,” Nucleic Acids Research, Vol. 27, pp. 4636–4641, 1999
[34] N. Chuzhanova, “Feature selection for genetic sequence classification,” Bioinformatics, Vol. 14, pp. 139–143, 1998
[35] N. Zavaljevsky, “Support vector machines with selective kernel scaling for protein classification and identification of key amino acid positions,” Bioinformatics, Vol. 18, pp. 689–696, 2002
[36] P. Conilione, D. Wang, “A comparative study on feature selection for E.coli promoter recognition,” Int. J. Inf. Technol., Vol. 11, pp. 54–66, 2005
[37] S. Kim, “miTarget:micro RNA target gene prediction using a support vector machine,” BMC Bioinformatics, Vol. 7, pp. 411, 2006
[38] G. Tedeschi, F. Esposito, “Neuronal networks observed with resting state functional magnetic resonance imaging in clinical populations,” In Bright P. Edition, 2012
[39] S. Sinha, “Discriminative motifs,” Journal Computer Biology, Vol. 10, pp. 599–615, 2019
[40] A. Ben-Dor, “Tissue classification with gene expression profiles,’ Journal of Computer Biology, Vol. 7, pp. 559–584, 2000
[41] S. Degroeve, “Feature sub set selection for splice site prediction,” Bioinformatics, Vol. 18, No. 2, pp. 75–83, 2002
[42] J. A. Hartigan, M. A. Wong, “Algorithm AS 136: A K-means clustering algorithm,” Journal of the Royal Statistical Society, Vol. 28, pp. 100–108, 1979
[43] R. Xu, D. Wunsch-II, “Clustering Hoboken, NJ:,” IEEE access, 2009
[44] T. Sørlie, C. M. Perou, R. Tibshirani, T. Aas, S. Geisler, H. Johnsen, “Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications,” In Proc. of the National Academy of Sciences, Vol. 98, No. 19, pp. 10869–10874, 2001
[45] D. Cordes, V. Haughton, J. D. Carew, K. Arfanakis, K. Maravilla, “Hierarchical clustering to measure connectivity in fmri resting-state data,” Magnetic Resonance Imaging, Vol. 20, No. 4, pp. 305–317, 2002
[46] T. Blumensath, S. Jbabdi, M. Glasser, D. C. Van Essen, K. Ugurbil, T. E. Behrens, S. M. Smith, “Spatially constrained hierarchical parcellation of the brain with resting-state fmri,” NeuroImage, Vol. 76, pp. 313–324, 2013
[47] Z. Quan, L. Gang, J. Xingpeng, L. Xiangrong Z. Xiangxiang, “Sequence clustering in bioinformatics: an empirical study,” Briefings in Bioinformatics, Vol. 21, No. 1, pp. 1–10, 2020
[48] H. Y. Lin, “Gene discretization based on em clustering and adaptive sequential forward gene selection for molecular classification,” Applied Soft Computing, Vol. 48, pp. 683–690, 2016
[49] E. Segal, H. Wang, D. Koller, “Discovering molecular pathways from protein interaction and gene expression data,” Bioinformatics, Vol. 19, pp. 264–272, 2003
[50] Maddah, M., L. Grimson, S. K. Warfield, W. M. Wells, “A unified framework for clustering and quantitative analysis of white matter fiber tracts,” Medical Image Analysis, Vol. 12, No. 2, pp. 191–202, 2008
[51] S. Rani, G. Sikka, “Recent techniques of clustering of time series data: A survey,’ International Journal of Computer Applications, Vol. 52, No. 15, pp. 1–9, 2012
[52] M. Ester, H. P. Kriegel, J. Sander, X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” Knowledge Discovery and Data Mining, Vol. 96, pp. 226–231, 1996
[53] P. Galdi, M. Fratello, F. Trojsi, A. Russo, G. Tedeschi, R. Tagliaferri, F. Esposito, “Consensus-based feature extraction in rs-fmri data analysis,” Soft Computing, pp. 1–11, 2017
[54] W. Poole, K. Leinonen, I. Shmulevich, T. Knijnenburg, B. Bernard, “Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression,” PLoS Computational Biology, Vol. 13, No. 2, pp. e1005347, 2017
[55] F. Pennacchietti, S. Vascon, T. Nieus, C. Rosillo, S. Das, S. K. Tyagarajan, F. Cella-Zanacchi, “Nanoscale molecular reorganization of the inhibitory postsynaptic density is a determinant of gabaergic synaptic potentiation,” Journal of Neuroscience, Vol. 37, No. 7, pp. 1747–1756, 2017
[56] M. Meila, J. Shi, “Learning segmentation by random walks,” Advances in neural information processing systems, pp. 873–879, 2001
[57] W. Elhefnawy, M. Li, J. Wang, Y. Li, “Construction of protein backbone fragments libraries on large protein sets using a randomized spectral clustering algorithm,” In Proc. international symposium on bioinformatics research and applications, Switzerland: pp. 108–119, 2017.
[58] Y. Zhang, H. Xiaohua, X. Jiang, “Multi-view clustering of microbiome samples by robust similarity network fusion and spectral clustering,” ACM Transactions on Computational Biology and Bioinformatics, Vol. 14, No. 2, pp. 264–271, 2017
[59] N. C. Sheffield, G. Pierron, J. Klughammer, P. Datlinger, A. Schönegger, M. Schuster, E. M. Tomazou, “DNA methylation heterogeneity defines a disease spectrum in ewing sarcoma,” Nature Medicine, Vol. 23, No. 3, pp. 386–395, 2017
[60] I. Cribben, Y. Yi, “Estimating whole-brain dynamics by using spectral clustering,” Journal of the Royal Statistical Society: Series C: Applied Statistics, Vol. 66, No. 3, pp. 607–627, 2017
[61] A. K. Alok, S. Saha, A. Ekbal, “Semi-supervised clustering for gene-expression data in multiobjective optimization framework,” International Journal of Machine Learning and Cybernetics, Vol. 8, No. 2, pp. 421–439, 2008
[62] Q. Wang, G. Chen, “Fuzzy soft subspace clustering method for gene co-expression network analysis,” International Journal of Machine Learning and Cybernetics, Vol. 8, No. 4, pp. 1157–1165, 2017
[63] P. Manocha, S. Bhasme, T. Gupta, B. K. Panigrahi, T. K. Gandhi, “Automated tumor segmentation and brain mapping for the tumor area,” arXiv preprint:1710.11121, pp. 1-14, 2017
[64] V. Kinani, J. Marie, A. J., Silva, F. G. Funes, D. M. Vargas, E. R. Díaz, A. Arellano, “Medical imaging lesion detection based on unified gravitational fuzzy clustering,” Journal of Healthcare Engineering, Vol. 2017, pp. 1-16, 2017
[65] U. Vercelli, M. Diano, T. Costa, A. Nani, S. Duca, G. Geminiani, F. Cauda, “Node detection using high-dimensional fuzzy parcellation applied to the insular cortex,” Neural Plasticity, Vol. 2016, pp. 1–8, 2016
[66] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, “Automatic subspace clustering of high dimensional data,” Data Mining and Knowledge Discovery, Vol. 11, No. 1, pp. 5–33. 2005
[67] J. Quackenbush, “Computational analysis of microarray data,” Nature Reviews Genetics, Vol. 2, No. 6, pp. 418-427, 2001
[68] Z. Wang, M. Gerstein, M. Snyder, “RNA-Seq.: A revolutionary tool for transcripttomics,” Nature Reviews Genetics, Vol. 10, No. 1, pp. 57–63, 2009
[69] A. A. Alizadeh, M. B. Eisen, R. Eric-Davis, C. Ma, I. S. Lossos, A. Rosenwald, “Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling,” Nature, Vol. 403, No. 6769, pp. 503–511, 2000
[70] R. Suzuki, H. Shimodaira, “Pvclust: An R package for assessing the uncertainty in hierarchical clustering,” Bioinformatics, Vol. 22, No. 12, pp. 1540–1542, 2006
[71] N. J. Borg, M. Mitchell, P. Lukacs, C. Mack, L. P. Waits, P. R. Krausman, “Behavioral connectivity among bighorn sheep suggests potential for disease spread,” The Journal of Wildlife Management, Vol. 81, No. 1, pp. 38–45, 2017
[72] A. H. Ellebedy, K. J. Jackson, H. T. Kissick, H. Nakaya, C. Davis, K. Roskin, R. Ahmed, “Defining antigen-specific plasmablast and memory b cell subsets in human blood after viral infection or vaccination,” Nature Immunology, Vol. 17, No. 10, pp. 1226–1234, 2016
[73] C. Esnault, F. Gualdrini, S. Horswell, G. Kelly, A. Stewart, P. East, R. Treisman, “Erk-induced activation of tcf family of srf cofactors initiates a chromatin modification cascade associated with transcription,” Molecular Cell, Vol. 65, No. 6, pp. 1081–1095, 2016
[74] P. Galdi, F. Napolitano, R. Tagliaferri, “Consensus clustering in gene expression,” In Proc. Of International meeting on computational intelligence methods for bioinformatics and biostatistics, pp. 57–67, Switzerland, 2014
[75] S. K. Pal, S. S. Ray, A. Ganivada, “Gene function analysis,” In Proc. of Granular neural networks, pattern recognition and bioinformatics, pp. 163–193). Cham, Switzerland, 2017
[76] R. C. Rennert, R. Schäfer, T. Bliss, M. Januszyk, “High-resolution microfluidic single-cell transcriptional profiling reveals clinically relevant subtypes among human stem cell populations commonly utilized in cell-based therapies,” Frontiers in Neurology, Vol. 7, pp. 41, 2016
[77] D. T. Pham, S. S. Dimov, C. D. Nguyen, “Selection of k in k-means clustering,” Journal of Mechanical Engineering Science, Vol. 219, No. 1, pp. 103–119, 2005
[78] R. Sharan, R. Shamir, “Click: a clustering algorithm with applications to gene expression analysis,” In Proc. of the 8th International Conference on Intelligent Systems for Molecular Biology, Vol. 16, 2000
[79] S. Tavazoie, J. D. Hughes, M. Campbell, R. Cho, G. M. Church, “Systematic determination of genetic network architecture,” Nature Genetics, Vol. 22, No. 3, pp. 281–285, 1999
[80] S. Saria, A. Goldenberg, “Subtyping: What it is and its role in precision medicine,” IEEE Intelligent Systems, Vol. 30, No. 4, pp. 70–75, 2015
[81] R. Mirnezami, J. Nicholson, A. Darzi, “Preparing for precision medicine,” New England Journal of Medicine, Vol. 366, No. 6, pp. 489–491, 2012
[82] G. Liu, C. Dong, L. Liu, “Integrated multiple omics data reveal subtypes of hepatocellular carcinoma,” PLoS One, Vol. 11, No 11, pp. e0165457, 2016
[83] E. Taskesen, S. M. Huisman, A. Mahfouz, J. Krijthe, M. Reinders, “Pan-Cancer subtyping in a 2D-map shows substructures that are driven by specific combinations of molecular characteristics,” Scientific Reports, Vol. 6, pp. 109–128, 2016.
[84] R. Higdon, R. K. Earl, L. Stanberry, C. Hudac, E. Montague, E. Stewart, “The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches in autism spectrum disorders,” Omics: A Journal of Integrative Biology, Vol. 19, No. 4, pp. 197–208, 2015
[85] K. V. Nielsen, B. Ejlertsen, S. Møller, H. T.
Mouridsen, “The value of top2a gene copy
number variation as a biomarker in breast
cancer: Update of dbcg trial 89d,” Acta Oncologica, Vol. 47, No. 4, 725–734, 2008
[86] C. Wang, S. M. Armasu, K. R. Kalli,G. L. Keeney, E. L. Goode, “Pooled clustering of high-grade serous ovarian cancer gene expression leads to novel consensus subtypes associated with survival and surgical outcomes,” Clinical Cancer Research, Vol. 23, No. 15, pp. 4077–4085, 2017
[87] C. Goutte, P. Toft, E. Rostrup, F. Nielsen, L. K. Hansen, “On clustering fMRI time series,” NeuroImage, Vol. 9, No. 3, pp. 298–310, 1999
[88] B. Thirion, O. Faugeras, “Feature characterization in fMRI data: The information bottleneck approach,” Medical Image Analysis, Vol. 8, No. 4, pp. 403–419, 2004
[89] K. Duan, S. S. Keerthi, “Which is the best multiclass svm method? An empirical study,” Multiple Classifier Systems, Vol. 3541, pp. 278–285, 2005
[90] C. W. Hsu, C. J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Transactions on Neural Networks, Vol. 13, No. 2, pp. 415–425, 2002
[91] Y. Zou W. Hongjie G. Xiaoyi L. Peng, “MK-FSVM-SVDD: A Multiple Kernel-based Fuzzy SVM Model for Predicting DNA-binding Proteins via Support Vector Data Description, Current,” Bioinformatics, Vol. 16, No. 2, 2021, pp. 274-283, 2021
[92] L. Zhou, L. Wang, L. Liu, P. Ogunbona, D. Shen, “Support vector machines for neuroimage analysis: Interpretation from discrimination,” In Proc. of International conference on Support Vector Machines Applications, Switzerland, pp. 191–220, 2014
[93] E. Byvatov, G. Schneider, “Support vector machine applications in bioinformatics,’ Applied Bioinformatics, Vol. 2, No. 2, pp. 67–77, 2003
[94] E. Neto, F. Biessmann, H. Aurlien, H. Nordby, T. Eichele, “Regularized linear discriminant analysis of eeg features in dementia patients,” Frontiers in Aging Neuroscience, Vol. 8, pp. 273-284, 2016
[95] Y. Guo, T. Hastie, R. Tibshirani, “Regularized linear discriminant analysis and its application in microarrays,” Biostatistics, Vol. 8, No. 1, pp. 86–100, 2006
[96] D. Huang, Y. Quan, M. He, B. Zhou “Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data,” Journal of Experimental & Clinical Cancer Research, Vol. 28, No. 1, pp. 149-153, 2009
[97] L. Li, J. Meng, J. Zhang, Y. S. Luan, X. He, Y. F. Zhu, “Parallel gene selection and dynamic ensemble pruning based on affinity propagation,” Computers in Biology and Medicine, Vol. 87, pp. 8–21, 2017
[98] Y. Qi, “Random forest for bioinformatics,” In Proc. Ensemble machine learning, pp. 307–323, 2012
[99] K. C. Chou, H. B. Shen, “Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic k-nearest neighbor classifiers,” Journal of Proteome Research, Vol. 5, No. 8, pp. 1888–1897, 2006
[100] L. A. Xijie, A. M. Moses, “An unsupervised knn method to systematically detect changes in protein localization in high-throughput microscopy images,” PloS One, Vol. 11, No. 7, pp. e0158712, 2016
[101] P. Horton, K. J. Park, T. Obayashi, N. Fujita, H. Hajime, C. J. Adams-Collier, K. Nakai, 2007
[102] H. A. Vrooman, C. Cocosco, F. Van-der-Lijn, R. Stokking, “Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification,” NeuroImage, Vol. 37, No. 1, pp. 71–81, 2007
[103] A. Ghayoor, J. S. Paulsen, R. E. Kim, H. J. Johnson, “Tissue classification of large-scale multi-site mr data using fuzzy k-nearest neighbor method. SPIE Medical Imaging,” International Society for Optics and Photonics, Vol. 97841, 2016
[104] M. Havaei, P. M. Jodoin, H. Larochelle, “Efficient interactive brain tumor segmentation as within-brain knn classification,” In Proc. of 22nd International Conference on Pattern Recognition (ICPR), Stockholm, Sweden, pp. 556–561, 2014
[105] D. H. Tran, K. Satou, H. T. Bao, “Finding microrna regulatory modules in human genome using rule induction,” BMC Bioinformatics, Vol. 9, No. 12, pp. 5-15, 2008
[106] G. Huang, K. Huang, T. Lee, J. T. Weng, “An interpretable rule-based diagnostic classification of diabetic nephropathy among type 2 diabetes patients,” BMC Bioinformatics, Vol. 16, No. 1, pp. 1-15, 2015
[107] D. Cangelosi, F. Blengio, R. Versteeg, A. Eggert, A. Garaventa, C. Gambini, L. Varesio, “Logic learning machine creates explicit and stable rules stratifying neuroblastoma patients,’ BMC Bioinformatics, Vol. 14, No. 7, pp. 1-12, 2013
[108] A. Gruca, M. Sikora, “Data-and expert-driven rule induction and filtering framework for functional interpretation and description of gene sets,” Journal of Biomedical Semantics, Vol. 8, No. 1, pp. 1-23, 2017
[109] C. A. Kumar, S. Ramakrishnan, “Binary classification of cancer microarray gene expression data using extreme learning machines,” In Proc. of IEEE International Conference on Computational Intelligence Computer, pp.1-4, 2014
[110] S. Vural, X. Wang, C. Guda,
“Classification of breast cancer patients using somatic mutation profiles and machine learning approaches,” BMC Syst. Biol., Vol. 10, pp. 264-276, 2016
[111] P. Danaee, R. Ghaeini, D. Hendrix, “A deep learning approach for cancer detection and relevant gene identification,” In Proc. of Pacific Symp. Bio comput. pp.219-229, 2017
[112] S. Tarek, E. Abd, M. Shoman, “Gene expression-based cancer classification,’ Egyptian Information Journal, Vol. 18, No. 3, pp. 151-159, 2017
[113] S. Turgut, M. Dagtekin, T. Ensari, “Microarray breast cancer data classification using machine learning methods,” In Proc. of Electric Electron., Compute. Sci. Biomed. Eng. Meeting (EBBT), pp.1-3, 2018
[114] R. A. Musheer, C. K. Verma, N. Srivastava, “Novel machine learning approach for classification of high-dimensional microarray data,” Soft Computing, Vol. 23, No. 24, pp. 13409-13421, 2019\
[115] K. KR, A. R. KV, A. Pillai, “An Improved Feature Selection and Classification of Gene Expression Profile using SVM,” In Proc. of 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 2019
[116] N. Y. Simsek, B. Haznedar, C. Kuzudisli, “A comparitie study of different algorithms on RNA-Seq cancer data,’ New Trends and Issues Proceedings on Advances in Pure and Applied Sciences. Vol. 12, pp. 24– 35, 2020
[117] J. Wu, C. Hicks, “Breast cancer type classification using machine learning,” Journal of personalized medicine, Vol. 11, pp. 1-12, 2021
[118] S. M. Plis, D. Hjelm, V. D. Calhoun, “Deep learning for neuroimaging: A validation study,” Frontiers in Neuroscience, Vol. 8, pp. 229, 2014
[119] C. Angermueller, T. Pärnamaa, L. Parts, O. Stegle, “Deep learning for computational biology,” Molecular Systems Biology, Vol. 12, No. 7, pp. 878-883, 2016
[120] P. Mamoshina, A. Vieira, E. Putin, A. Zhavoronkov, “Applications of deep learning in biomedicine,” Molecular Pharmaceutics, Vol. 13, No. 5, pp. 1445–1454, 2016
[121] S. Vieira, W. H. Pinaya, A. Mechelli, “Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications,” Neuroscience & Biobehavioral Reviews, Vol. 74, pp. 58–75, 2017
[122] J. Bayani, J. A. Squire, “Fluorescence in situ hybridization (FISH),” Current Protocols in Cell Biology, Vol. 22, pp. 1–52, 2004
[123] C. L. Thompson, L. Ng, V. Menon, A. Jones, “A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain,” Neuron, Vol. 83, No. 2, pp. 309–323, 2014
[124] T. Zeng, R. Li, R. Mukkamala, J. Ye, S. Ji, “Deep convolutional neural networks for annotating gene expression patterns in the mouse brain,” BMC Bioinformatics, Vol. 16, No. 1, pp. 147-155, 2015
[125] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, “Decaf: A deep convolutional activation feature for generic visual recognition,” In Proc. International Conference on Machine Learning, Beijing, China, pp. 647–655, 2014
[126] A. S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, “Cnn features off-the-shelf: An astounding baseline for recognition,” In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, pp. 806–813, 2014
[127] M. Oquab, L. Bottou, I. Laptev, J. Sivic, “Learning and transferring mid-level image representations using convolutional neural networks,” In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, pp. 1717–1724, 2014
[128] R. Rohs, X. Jin, S. West, R. Joshi, B. Honig, R. S. Mann, “Origins of specificity in protein-dna recognition,’ Annual Review of Biochemistry, Vol. 79, pp. 233–269, 2010
[129] H. Kazan, D. Ray, E. T. Chan, T. R. Hughes, Q. Morris, “RNAcontext: A new method for learning the sequence and structure binding preferences of rna-binding proteins,’ PLoS Computational Biology, Vol. 6, No. 7, pp. e1000832, 2010
[130] T. Siggers, R. Gordân, “Protein–DNA binding: Complexities and multi-protein codes,” Nucleic Acids Research, Vol. 42, No. 4, pp. 2099–2111, 2013
[131] B. Alipanahi, A. Delong, M. T. Weirauch, B. J. Frey, “Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning,” Nature Biotechnology, Vol. 33, No. 8, pp. 831–838, 2015
[132] H. Suk, C. Y. Wee, S. W. Lee, D. Shen, “State-space model with deep learning for functional dynamics estimation in resting-state fMRI,” NeuroImage, Vol. 129, pp. 292–307, 2016
[133] Y. Bengio, I. J. Goodfellow, A. Courville, “Deep learning,” Nature, Vol. 521, pp. 436–444, 2015
[134] X. W. Gao, R. Hui, “A deep learning based approach to classification of ct brain images,” In Proc. of SAI Computing Conference (SAI), London, United Kingdom, pp. 28–31, 2016
[135] A. Gupta, M. Ayhan, A. Maida, “Natural image bases to represent neuroimaging data,” In Proc. of International Conference on Machine Learning, pp. 987–994, 2013
[136] A. Krizhevsky, I. Sutskever, G. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, pp. 1097–1105, 2012
[137] A. Payan, G. Montana, “Predicting Alzheimer’s disease: A neuroimaging study with 3d convolutional neural networks,” arXiv:1502.02506, pp. 1-14, 2015
[138] J. Kawahara, C. J. Brown, S. P. Miller, B. G. Booth, V. Chau, R. Grunau, G. Hamarneh, “Brainnetcnn: Convolutional neural networks for brain net- works: Towards predicting neurodevelopment,” NeuroImage, Vol. 146, pp. 1038–1049, 2017
[139] D. Urda, F. Moreno, “Deep learning to analyze RNA-seq gene expression data,” In Proc. International Work-Conference on Artificial Neural Networks, Vol. 3. pp. 50-59, 2017
[140] A. Vazhayil, R. Vinayakumar, K. Soman, “Deep Proteomics: Protein family classification using shallow and deep networks,” arXiv:1809.04461, pp. 1-17, 2018
[141] A. Cheerla, O. Gevaert, “Deep learning with multi modal representation for pan cancer prognosis prediction,” Bioinformatics, Vol. 35, No. 14, pp. 446-454, 2019
[142] L. Chen, X. Pan, Y. H. Zhang, M. Liu, T. Huang, Y. D. Cai, “Classification of widely and rarely expressed genes with recurrent neural network,” Computer Structural Biotechnology Journal, Vol. 17, pp. 49-60, 2019
[143] J. Lim, S. Bang, J. Kim, C. Park, J. Cho, S. Kim, “Integrative deep learning for identifying differentially expressed (DE) biomarkers,” Computational and mathematical methods in medicine, Vol. 2019, pp. 1-10, 2019
[144] S. Bian, “Diagnosis of Alzheimer’s disease using structural MRI and Convolution neural network,” In Proc. of ICEEB, Vol. 185, pp. 03037-03042, 2020
[145] M. M. Islam, S. Huang, R. Ajwad, C. Chi, Y. Wang, P. Hu, “An integrative deep learning framework for classifying molecular subtypes of breast cancer,” Computational and Structural Biotechnology Journal, Vol. 18, pp. 2185-2199, 2020
[146] L. Zhou, M. Rueda, A. Alkhateeb, “Classification of Breast Cancer Nottingham Prognostic Index Using High-Dimensional Embedding and Residual Neural Network,” Cancers, Vol. 14, pp. 1-16, 2022.