Optimization of Electromagnetic Railgun and Projectile’s Trajectory by Genetic Algorithm
Subject Areas : Majlesi Journal of Telecommunication DevicesNavid Moshtaghi Yazdani 1 , Mohammad Hasan Olyaei 2
1 - Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
2 - Faculty of Electrical Engineering, Sadjad University of Technology, Mashhad, Iran.
Keywords:
Abstract :
[1] J. Kerrisk, “Current distribution and inductance calculations for rail-gun conductors”, NASA STI/Recon Technical Report N 82, 29551, 1981.
[2] S. N. Praneeth, B. Singh, “Influence of filleting and tapering of rails on railgun parameters”, IEEE Transactions on Plasma Science, Vol. 48, No. 3, pp. 721–726, 2020.
[3] B.-K. Kim, K.-T. Hsieh, “Effect of rail/armature geometry on current density distribution and inductance gradient”, IEEE transactions on Magnetics Vol. 35, No. 1, pp. 413–416, 1999.
[4] A. Keshtkar, “Effect of rail dimension on current distribution and inductance gradient”, IEEE Transactions on Magnetics Vol. 41, No. 1, pp. 383–386, 2005.
[5] J. Gallant, “Parametric study of an augmented railgun”, IEEE Transactions on Magnetics, Vol. 39, Vol. 1, pp. 451–455, 2003.
[6] O. Liebfried, “Review of inductive pulsed power generators for railguns”, IEEE Transactions on Plasma Science, Vol. 45, No. 7, pp.1108–1114, 2017.
[7] K.-S. Yang, S.-H. Kim, B. Lee, S. An, Y.-H. Lee, S. H. Yoon, I. S. Koo, Y. S. Jin, Y. B. Kim, J. S. Kim, et al., “Electromagnetic launch experimentsusing a 4.8-mj pulsed power supply”, IEEE Transactions on Plasma Science, Vol. 43, No. 5, pp. 1358–1361, 2015.
[8] J. Kerrisk, “Electrical and thermal modeling of railguns”, IEEE Transactions on Magnetics, Vol. 20 No. 2, pp. 399–402, 1984
[9] A. Keshtkar, L. Gharib, M. S. Bayati, M. Abbasi, “Simulation of a two-turn railgun and comparison between a conventional railgun and a two-turn railgun by 3-d fem”, IEEE Transactions on Plasma Science, Vol. 41, No. 5, pp. 1392–1397, 2013.
[10] K.-T. Hsieh, “Numerical study on groove formation of rails for various materials”, in: 2004 12th Symposium on Electromagnetic Launch Technology, IEEE, 2004, pp. 355–358.
[11] J. Kerrisk, “Electrical and thermal modeling of railguns”, IEEE Transactions on Magnetics, Vol. 20 , No. 2, pp. 399–402. A, 1984.
[12] D. Rodger, H. Lai, “A comparison of formulations for 3d finite element modeling of electromagnetic launchers”, IEEE transactions on magnetics, Vol. 37, No. 1, pp. 135–138, 2001.
[13] Y. He, Y. Guan, G. Gao, Y. Li, X. Qiu, B. Wei, S. Song, “Efficiency analysis of an electromagnetic railgun with a full circuit model”, IEEE Transactions on Plasma Science, Vol. 38, No. 1, pp. 3425–3428, 2010.
[14] D. Rodger, P. J. Leonard, J. F. Eastham, “Modelling electromagnetic rail launchers at speed using 3d finite elements”, IEEE transactions on magnetics, Vol. 27, No. 1, pp. 314–317, 1991.
[15] L. M. Hively, W. C. Condit, “Electromechanical railgun model”, IEEE trans-actions on magnetics, Vol. 27, No. 4, pp. 3731–3734, 1991.
[16] A. Keshtkar, S. Bayati, A. Keshtkar, “Derivation of a formula for induc-tance gradient using intelligent estimation method”, IEEE Transactions on Magnetics Vol. 45, No. 1, pp. 305–308, 2009.
[17] X. Yu, Z. Fan, “Simulation and two-objective optimization of the electromagnetic-railgun model considering vsec resistance and contact re-sistance”, IEEE Transactions on Plasma Science, Vol. 39, No. 1, pp. 405–410, 2010.
[18] N. S. Brahmbhatt, “Design and optimization of an electromagnetic railgun”.
[19] S. A. Taher, M. Jafari, M. Pakdel, “A new approach for modeling electromagnetic railguns”, IEEE Transactions on Plasma Science, Vol. 43, No. 5, pp. 1733–1741, 2015.
[20] F. Deadrick, R. Hawke, J. Scudder, Magrac–“a railgun simulation program”, IEEE Transactions on Magnetics, Vo. 18, No. 1, pp. 94–104, 1982