Synthesis and Characterization of Biodegradable and Antibacterial Coverage Based on Aloe vera/Nanochitosan for Bread Packaging
Subject Areas :M. Zarei 1 , A. Hasani 2 , Z. Hejri 3
1 - Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
2 - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
3 - Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
Keywords:
Abstract :
[2] M. Zhai, F. Yoshi, T. Kume, Radiation modification of starch – based plastic sheets. Carbohydrate Polymers, 52, 2003, 311-317.
[3] K. Majdzadeh-Ardakani, A. Navarchian, F. Sadeghi, Optimization of mechanical properties of thermoplastic starch/clay nanocomposites, Carbohydrate Polymers, 79, 2010, 547-554.
[4] A. Bromand, Z. Emam-Djomeh, M. Hamidi, S.H. Razavi, Antimicrobial, water vapour permeability, mechanical and Thermal properties of casein Zataraia multiflora Bioss. Extract containing film. LWT-Food science and technology, 44, 2011, 2316-2323.
[5] M. Avella, J.J. De Vlieger, M.E. Errico, S. Fischer, P. Vacca, M.G. Volpe, Biodegradable starch/clay nanocomposites films for food packaging applications, J. of Food Chemistry, 93, 2005, 467-474.
[6] H.R. Bolin, C.C. Huxsoll, Control of Minimally Processed Carrot (Daucus carota) Surface Discoloration Caused by Abrasion Peeling. Journal of food science, 56(2), 1998, 416-422.
[7] P. Espitia, W. XianDu, R. Bustillos, N. Soares, T. McHugh, Edible films from pectin: Physical-mechanical and antimicrobial properties – A review, Article in Food Hydrocolloids, 35, 2014, 287-296.
[8] S. Shankar, J. Rhim, Bio-Nanocomposites for Food Packaging Applications, Reference Module in Materials Science and Materials Engineering, 2019.
[9] J.P. Paula, F.S. Nilda, F. Reinaldo, S. Jane, R.C. Sélia, M. Débora, A.B. Rejane, O.C. Sukarno, J.A. Nélio, A.A. Eber, Physical–mechanical and antimicrobial properties of anocomposites films with pediocin and ZnO nanoparticles, J carbohydrate polymers, 94, 2013, 199-208.
[10] O.A. Silva, Michelly G. Pellá, Matheus G. Pellá, J. Caetano, D.C. Dragunski, Synthesis and characterization of a low solubility edible film based on native cassava starch, International Journal of Biological Macromolecules, 128, 2019, 290-296.
[11] I. Shahabi-Ghahfarrokhi, V. Goudarzi, A. Babaei-Ghazvini, Production of starch based biopolymer by green photochemical reaction at different UV region as a food packaging material: Physicochemical characterization, International Journal of Biological Macromolecules, 122, 2019, 201-209.
[12] W. Xie, P. Xu, W. Wang, Q. Liu, Preparation and antibacterial activity of a water-soluble chitosan derivative, Carbohydrate polymers, 50, 2002, 35-40.
[13] C. Damm, H. Munstedt, A. Rosch, Long-term antimicrobial polyamide 6/silver-nanocomposites, J. of Materials Science, 42, 2007, 6067-6073.
[14] Y. Liu, X. Wang, F. Yang, X. Yang, Excellent antimicrobial properties of mesoporous anatase Tio2 and Ag/Tio2 composite films, J. of Microporous and Mesoporous Materials, 114, 2008, 431-439.
[15] Y. Chung, S. Ansari, L. Estevez, H. Lai, Preparation and properties of biodegradable starch–clay nanocomposites, Carbohydrate Polymers, 79(2), 2010, 391-396.
[16] S. Sayanjali, B. Ghanbarzadeh, S. Ghiassifar, Evaluation of antimicrobial and physical properties of edible film based on carboxymethyl cellulose containing potassium sorbate on some mycotoxigenic Aspergillus, LWT – Food Science and Technology, 44, 2011, 1133-1138.
[17] A.T. Changa, R. Frias Jr, L.V. Alvarez, U.G. Bigol, J.D. Guzman, Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auriculariasp, Biocatalysis and Agricultural Biotechnology, 17, 2019, 189-195.
[18] W. Cao, L. Yue, Zh. Wang, High antibacterial activity of chitosan – molybdenum disulfide nanocomposites, Carbohydrate Polymers, 215, 2019, 226-234.
[19] F. Xie, E. Pollet, P. Halley, L. Avérous, Starch-based nano-biocomposites, Progress in Polymer Science, 38, 2013, 1590-1628.
[20] M. Rasouli, M. Koushesh Saba, A. Ramezanian, Inhibitory effect of salicylic acid and Aloe vera gel edible coating on microbial load and chilling injury of orange fruit, Scientia Horticulturae, 247, 2019, 27-34.
[21] N. Aghamohamadi, N. SharifiSanjani, R. FaridiMajidi, S. AhmadNasrollahi, Preparation and characterization of Aloe vera acetate and electrospinning fibers as promising antibacterial properties materials, Materials Science and Engineering: C, 94, 2019, 445-452.
[22] N. Magalhães, C. Andrade, Thermoplastic corn starch/clay hybrids: Effect of clay type and content on physical properties, Carbohydrate Polymers, 75, 2009, 712-718.
[23] D. Schlemmer, R. Angélica, M. Sales, Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites, Composite Structures, 92, 2010, 2066-2070.
[24] T. Gutiérrez, A. Ponce, V. Alvarez, Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials, Materials Chemistry and Physics, 194, 2017, 283-292.
[25] A. Giannakas, M. Vlacha, C. Salmas, A. Leontiou, Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites, Carbohydrate Polymers, 140, 2016, 408-415.
[26] سید محسن اصغری، ساناز ابراهیمی سامانی، زهرا سراج، خسرو خواجه، سامان حسینخانی، "بهینه سازی سنتز نانوذرات کیتوزان"، زیست فناوری دانشگاه تربیت مدرس، دوره 4، شماره 2، 1392.
[27] V. Sessini, M. Arrieta, J. Kenny, L. Peponi, Processing of edible films based on nanoreinforced gelatinized starch, Polymer Degradation and Stability, 132, 2016, 157-168.
[28] V. Campos-Requena, B. Rivas, M. Pérez, C. Figueroa, Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries – In vivo antimicrobial synergy over Botrytis cinerea, Postharvest Biology and Technology, 129, 2017, 29-36.
[29] M. Divandari, J. Campbell, Mechanisms of bubble trail formation in castings, Trans. AFS, 109, 2001, 433-442.
[30] بابک قنبرزاده ، هادی الماسی، "نانو کامپوزیت های بیو پلیمری زیست تخریب پذیر: روشهای تولید و ویژگیها"، فصلنامه دنیای نانو، شماره 15، 1388، 20-10.
[31] H. Tian, K. Wang, D. Liu, J. Yan, A. Xiang, A. Rajulu, Enhanced mechanical and thermal properties of poly (vinyl alcohol)/corn starch blends by nanoclay intercalation, International Journal of Biological Macromolecules, 101, 2017, 314-320.
[32] سبا بلقیسی، محمدحسین عزیزی، گیتی ظهوریان، زهرا هادیان، "ارزیابی خواص فیزیکی فیلم خوراکی پروتئین آب پنیر- منوگلیسرید و اثر پوشش دهی آن بر افت رطوبت و ویژگی های حسی گوشت تازه گوسفند"، مجله علوم تغذیه و صنایع غذایی ایران، سال سوم، شماره 3، 1387، 93-83.
[33] A. Edhirej, S. Sapuan, M. Jawaid, N. Zahari, Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties, International Journal of Biological Macromolecules, 101, 2017, 75-83.
[34] هما بقایی، فریماه آقایی، ناصر صداقت، محبت محبی، "بررسی اثر افزودن اسانس سیر بر ویژگی های مکانیکی، فیزیکوشیمیایی، میکروبی و حسی فیلم خوراکی تهیه شده از ایزوله پروتئین سویا" پژوهشهای علوم و صنایع غذایی ایران, دوره 8, شماره 3, سال 1391, صفحات 287-279.
[35] M. Lai, P. Liu, H. Lin, Y. Luo, H. Li, X. Wang, R. Sun, Interaction between chitosan-based clay nanocomposites and cellulose in a chemical pulp suspension, Carbohydrate Polymers, 137, 2016, 375-381.
[36] P. Cazón, G. Velazquez, J. Ramírez, M. Vázquez, Polysaccharide-based films and coatings for food packaging, Food Hydrocolloids, 68, 2017, 136-148.
[37] S. Chang, H. Lai, Effect of trisodium citrate on swelling property and structure of cationic starch thin film, Food Hydrocolloids, 56, 2016, 254-265.
[38] فریده طباطبایی یزدی، بهروز علیزاده بهبهانی، علیرضا وسیعی، سحر روشنک، سید عل مرتضوی، "تولید پوشش خوراکی ضد میکروبی بر پایه موسیلاژ دانه بارهنگ کبیر در ترکیب با اسانس گلپر: بررسی ویژگیها و کاربرد آن در گوشت گاو نگهداری شده در دمای یخچال"، فصلنامه میکروبیولوژی کاربردی در صنایع غذایی، شماره 3، 1396، 21-1.
_||_[2] M. Zhai, F. Yoshi, T. Kume, Radiation modification of starch – based plastic sheets. Carbohydrate Polymers, 52, 2003, 311-317.
[3] K. Majdzadeh-Ardakani, A. Navarchian, F. Sadeghi, Optimization of mechanical properties of thermoplastic starch/clay nanocomposites, Carbohydrate Polymers, 79, 2010, 547-554.
[4] A. Bromand, Z. Emam-Djomeh, M. Hamidi, S.H. Razavi, Antimicrobial, water vapour permeability, mechanical and Thermal properties of casein Zataraia multiflora Bioss. Extract containing film. LWT-Food science and technology, 44, 2011, 2316-2323.
[5] M. Avella, J.J. De Vlieger, M.E. Errico, S. Fischer, P. Vacca, M.G. Volpe, Biodegradable starch/clay nanocomposites films for food packaging applications, J. of Food Chemistry, 93, 2005, 467-474.
[6] H.R. Bolin, C.C. Huxsoll, Control of Minimally Processed Carrot (Daucus carota) Surface Discoloration Caused by Abrasion Peeling. Journal of food science, 56(2), 1998, 416-422.
[7] P. Espitia, W. XianDu, R. Bustillos, N. Soares, T. McHugh, Edible films from pectin: Physical-mechanical and antimicrobial properties – A review, Article in Food Hydrocolloids, 35, 2014, 287-296.
[8] S. Shankar, J. Rhim, Bio-Nanocomposites for Food Packaging Applications, Reference Module in Materials Science and Materials Engineering, 2019.
[9] J.P. Paula, F.S. Nilda, F. Reinaldo, S. Jane, R.C. Sélia, M. Débora, A.B. Rejane, O.C. Sukarno, J.A. Nélio, A.A. Eber, Physical–mechanical and antimicrobial properties of anocomposites films with pediocin and ZnO nanoparticles, J carbohydrate polymers, 94, 2013, 199-208.
[10] O.A. Silva, Michelly G. Pellá, Matheus G. Pellá, J. Caetano, D.C. Dragunski, Synthesis and characterization of a low solubility edible film based on native cassava starch, International Journal of Biological Macromolecules, 128, 2019, 290-296.
[11] I. Shahabi-Ghahfarrokhi, V. Goudarzi, A. Babaei-Ghazvini, Production of starch based biopolymer by green photochemical reaction at different UV region as a food packaging material: Physicochemical characterization, International Journal of Biological Macromolecules, 122, 2019, 201-209.
[12] W. Xie, P. Xu, W. Wang, Q. Liu, Preparation and antibacterial activity of a water-soluble chitosan derivative, Carbohydrate polymers, 50, 2002, 35-40.
[13] C. Damm, H. Munstedt, A. Rosch, Long-term antimicrobial polyamide 6/silver-nanocomposites, J. of Materials Science, 42, 2007, 6067-6073.
[14] Y. Liu, X. Wang, F. Yang, X. Yang, Excellent antimicrobial properties of mesoporous anatase Tio2 and Ag/Tio2 composite films, J. of Microporous and Mesoporous Materials, 114, 2008, 431-439.
[15] Y. Chung, S. Ansari, L. Estevez, H. Lai, Preparation and properties of biodegradable starch–clay nanocomposites, Carbohydrate Polymers, 79(2), 2010, 391-396.
[16] S. Sayanjali, B. Ghanbarzadeh, S. Ghiassifar, Evaluation of antimicrobial and physical properties of edible film based on carboxymethyl cellulose containing potassium sorbate on some mycotoxigenic Aspergillus, LWT – Food Science and Technology, 44, 2011, 1133-1138.
[17] A.T. Changa, R. Frias Jr, L.V. Alvarez, U.G. Bigol, J.D. Guzman, Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auriculariasp, Biocatalysis and Agricultural Biotechnology, 17, 2019, 189-195.
[18] W. Cao, L. Yue, Zh. Wang, High antibacterial activity of chitosan – molybdenum disulfide nanocomposites, Carbohydrate Polymers, 215, 2019, 226-234.
[19] F. Xie, E. Pollet, P. Halley, L. Avérous, Starch-based nano-biocomposites, Progress in Polymer Science, 38, 2013, 1590-1628.
[20] M. Rasouli, M. Koushesh Saba, A. Ramezanian, Inhibitory effect of salicylic acid and Aloe vera gel edible coating on microbial load and chilling injury of orange fruit, Scientia Horticulturae, 247, 2019, 27-34.
[21] N. Aghamohamadi, N. SharifiSanjani, R. FaridiMajidi, S. AhmadNasrollahi, Preparation and characterization of Aloe vera acetate and electrospinning fibers as promising antibacterial properties materials, Materials Science and Engineering: C, 94, 2019, 445-452.
[22] N. Magalhães, C. Andrade, Thermoplastic corn starch/clay hybrids: Effect of clay type and content on physical properties, Carbohydrate Polymers, 75, 2009, 712-718.
[23] D. Schlemmer, R. Angélica, M. Sales, Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites, Composite Structures, 92, 2010, 2066-2070.
[24] T. Gutiérrez, A. Ponce, V. Alvarez, Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials, Materials Chemistry and Physics, 194, 2017, 283-292.
[25] A. Giannakas, M. Vlacha, C. Salmas, A. Leontiou, Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites, Carbohydrate Polymers, 140, 2016, 408-415.
[26] سید محسن اصغری، ساناز ابراهیمی سامانی، زهرا سراج، خسرو خواجه، سامان حسینخانی، "بهینه سازی سنتز نانوذرات کیتوزان"، زیست فناوری دانشگاه تربیت مدرس، دوره 4، شماره 2، 1392.
[27] V. Sessini, M. Arrieta, J. Kenny, L. Peponi, Processing of edible films based on nanoreinforced gelatinized starch, Polymer Degradation and Stability, 132, 2016, 157-168.
[28] V. Campos-Requena, B. Rivas, M. Pérez, C. Figueroa, Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries – In vivo antimicrobial synergy over Botrytis cinerea, Postharvest Biology and Technology, 129, 2017, 29-36.
[29] M. Divandari, J. Campbell, Mechanisms of bubble trail formation in castings, Trans. AFS, 109, 2001, 433-442.
[30] بابک قنبرزاده ، هادی الماسی، "نانو کامپوزیت های بیو پلیمری زیست تخریب پذیر: روشهای تولید و ویژگیها"، فصلنامه دنیای نانو، شماره 15، 1388، 20-10.
[31] H. Tian, K. Wang, D. Liu, J. Yan, A. Xiang, A. Rajulu, Enhanced mechanical and thermal properties of poly (vinyl alcohol)/corn starch blends by nanoclay intercalation, International Journal of Biological Macromolecules, 101, 2017, 314-320.
[32] سبا بلقیسی، محمدحسین عزیزی، گیتی ظهوریان، زهرا هادیان، "ارزیابی خواص فیزیکی فیلم خوراکی پروتئین آب پنیر- منوگلیسرید و اثر پوشش دهی آن بر افت رطوبت و ویژگی های حسی گوشت تازه گوسفند"، مجله علوم تغذیه و صنایع غذایی ایران، سال سوم، شماره 3، 1387، 93-83.
[33] A. Edhirej, S. Sapuan, M. Jawaid, N. Zahari, Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties, International Journal of Biological Macromolecules, 101, 2017, 75-83.
[34] هما بقایی، فریماه آقایی، ناصر صداقت، محبت محبی، "بررسی اثر افزودن اسانس سیر بر ویژگی های مکانیکی، فیزیکوشیمیایی، میکروبی و حسی فیلم خوراکی تهیه شده از ایزوله پروتئین سویا" پژوهشهای علوم و صنایع غذایی ایران, دوره 8, شماره 3, سال 1391, صفحات 287-279.
[35] M. Lai, P. Liu, H. Lin, Y. Luo, H. Li, X. Wang, R. Sun, Interaction between chitosan-based clay nanocomposites and cellulose in a chemical pulp suspension, Carbohydrate Polymers, 137, 2016, 375-381.
[36] P. Cazón, G. Velazquez, J. Ramírez, M. Vázquez, Polysaccharide-based films and coatings for food packaging, Food Hydrocolloids, 68, 2017, 136-148.
[37] S. Chang, H. Lai, Effect of trisodium citrate on swelling property and structure of cationic starch thin film, Food Hydrocolloids, 56, 2016, 254-265.
[38] فریده طباطبایی یزدی، بهروز علیزاده بهبهانی، علیرضا وسیعی، سحر روشنک، سید عل مرتضوی، "تولید پوشش خوراکی ضد میکروبی بر پایه موسیلاژ دانه بارهنگ کبیر در ترکیب با اسانس گلپر: بررسی ویژگیها و کاربرد آن در گوشت گاو نگهداری شده در دمای یخچال"، فصلنامه میکروبیولوژی کاربردی در صنایع غذایی، شماره 3، 1396، 21-1.