Application of Fully Green Bio-Composites in Manufacturing of Wind Turbine Blades: A Strategic Review
Subject Areas : Journal of Environmental Friendly MaterialsN Desai 1 , P Bhatt 2 , M Solanki 3
1 - G H Patel College of Engineering & Technology, Gujarat, India
2 - G H Patel College of Engineering & Technology, Gujarat, India
3 - G H Patel College of Engineering & Technology, Gujarat, India
Keywords: Material property, Biodegradability, Wind Turbine Blades, Bio-Composites, Natural Fibres, Biodegradable Matrix,
Abstract :
[1] Y. Simsek, W. G. Santika, M. Anisuzzaman, T. Urmee, P. A. Bahri and R. Escobar, An Analysis of Addit. Energy Requirement to Meet the Sustainable Dev. Goals. J. Cleaner Prod., 272, (2020), 122646.
[2] M. Kamiura, Toray’s Strategy for Carbon Fiber Compos. Mater. In Proc. of the 3rd IT-2010 Strategy Seminar. Tokyo: Carbon Fiber Compos. Mater., (2008).
[3] K. P. M. Y. V. Dathu and R. Hariharan, Efficiency. Mater. Today: Proc., 33, (2020), 565.
[4] A. V. Pradeep, S. S. Prasad, L. V. Suryam and P. P. Kumari, A Comprehensive Rev. on Contemporary Materials Used for Blades of Wind Turbine. Mater. Today: Proc., 19, (2019), 556.
[5] G. Abumeri and F. Abdi, Advanced Composite Wind Turbine Blade Design Based on Durability and Damage Tolerance (No. ASC-2011-DOE-1). AlphaSTAR Corporation, Long Beach (United States), CA, (2012)
[6] F. Ardente, G. Beccali, M. Cellura and V. L. Brano, Life Cycle Assessment of a Solar Thermal Collector. Renewable Energy, 30(7), (2005), 1031.
[7] B. Hoevel and A. Sagnard, New Materials Tackle Weight, Strength and Cure Time Issues for Wind Turbine Blades. Reinf. Plast., 55(4), (2011), 38.
[8] Gupta, N. and Doddamani, M., 2018. Polymer Matrix Composites. JOM, 70(7), pp.1282-1283.
[9] A. Oun and B. F. Yousif, Two-Body Abrasion of Bamboo Fibre/Epoxy Compos. In Ecotribology Springer, Cham., (2016), 145.
[10] P. V. Deepthi, K. S. R. Raju and M. I. Reddy, Compos. Mater. Today: Proc., 18, (2019), 2114.
[11] A. Wagenführ, A Lightweight Natural Fibre Compos. Construct. Lightweight Des. Worldwide, 10(1), (2017), 3.
[12] A. Corona, B. Madsen, M. Z. Hauschild and M. Birkved, Natural Fibre Selection for Compos. Eco-Des. CIRP Annals, 65(1), (2016), 13.
[13] A. Alavudeen, N. Rajini, S. Karthikeyan, M. Thiruchitrambalam and N. Venkateshwaren, Effect of Woven Fabric and Random Orientation. Mater. & Des., (1980-2015), 66, (2015), 246.
[14] H. Gohal, V. Kumar and H. Jena, Study of Natural Fibre Compos. Mater. and it’s Hybridization Tech. Mater. Today: Proc., (2020).
[15] I. Taha and G. A. Ziegmann, Comparison of Polym. J. Compos. Mater., 40(21), (2006), 1933.
[16] A. Muhammad, M. R. Rahman, S. Hamdan and K. Sanaullah, Recent Dev. in Bamboo Fiber-Based Compos.: a Rev. Polym. Bull., 76(5), (2019), 2655.
[17] D. Bhonde, P. B. Nagarnaik, D. K. Parbat and U. P. Waghe, Phys. and Mech. Prop. of Bamboo (Dendrocalmus Strictus). Int. J. of Sci. & Eng. Res., 5(1), (2014), 455.
[18] D. Awalluddin, M. A. M. Ariffin, M. H. Osman, M. W. Hussin, M. A. Ismail, H. S. Lee and N. H. A. S. Lim, Mech. Prop. of Different Bamboo Species. In MATEC Web of Conf. EDP Sci., Vol. 138, (2017), 01024.
[19] D. U. Shah, M. C. Bock, H. Mulligan and M. H. Ramage, Therm. Cond. Eng. Bamboo Compos. J. Mater. Sci., 51(6), (2016), 2991.
[20] D. Liu, J. Song, D. P. Anderson, P. R. Chang and Y. Hua, Bamboo Fiber and it’s Reinf. Compos.: Struct. and Prop. Cellul., 19(5), (2012), 1449.
[21] L. A. Pothan, Z. Oommen S. and Thomas, Compos. Sci. and Technol., 63(2), (2003), 283.
[22] S. Dhakal, and B. K. Gowda, Compos. Mater. Today: Proc., 4(8), (2017), 7592.
[23] M. Idicula, S. K. Malhotra, K. Joseph and S. Thomas, Compos. Sci. Technol., 65(7-8), (2005), 1077.
[24] N. Chand and S. A. R. Hashmi, J. Mater. Sci., 28(24), (1993), 6724.
[25] P. N. Khanam, H. A. Khalil, G. R. Reddy and S. V. Naidu, Tensile, Flexural and Chemical Resistance Properties of Sisal Fibre Reinforced Polymer Compos.: Effect of Fibre Surface Treatment. J. Polym. Environ., 19(1), (2011), 115.
[26] Z. Alemayehu, R. B. Nallamothu, M. Liben, S. K. Nallamothu and A. K. Nallamothu, Experiment. Invest. Charact. Sisal Fiber as Compos. Mater. Light Cehicle Body Appl. Mater. Today: Proc., (2020).
[27] A. R. Prasad and K. M. Rao, Mechanical Properties of Natural Fibre Reinforced Polyester Compos.: Jowar, Sisal and Bamboo. Mater. Des., 32(8-9), (2011), 4658.
[28] S. M. Yukseloglu and H. Yoney, Adv. Sci. Technol. Towards Ind. Appl. Springer, Dordrecht, (2016), 255.
[29] S. R. T. Reddy, A. R. Prasad and K. Ramanaiah, Tensile and Flexural Properties of Biodegradable Jute Fiber Reinforced Poly Lactic Acid Compos. Mater. Today: Proc., (2020).
[30] A. C. C. Neves, L. A. Rohen, D. P. Mantovani, J. P. Carvalho, C. M. F. Vieira, F. P. Lopes, N. T. Simonassi, da S. F. Luz and S. N. Monteiro, J. Mater. Res. Technol., 9(2), (2020), 1296.
[31] R. Potluri, Charact. Appl. In Green Compos. Springer, Singapore, (2019), 1.
[32] N. Sapiai, A. Jumahat, N. Shaari and A. Tahir, Mechanical Properties of Nanoclay-Filled Kenaf and Hybrid Glass/Kenaf Fiber Compos. Mater. Today: Proc., (2020).
[33] L. Ravindran, M. S. Sreekala and S. Thomas, Int. J. of Biol. Macromol., 131, (2019), 858.
[34] A. Tribot, C. Delattre, E. Badel, C. G. Dussap, P. Michaud and de H. Baynast, Des. Industry. Crops Prod., 123, (2018), 539.
[35] V. G. Pratheep, E. B. Priyanka, S. Thangavel, J. J. Gousanal, P. B. Antony and E. D. Kavin, Investigation and Analysis of Corn Cob, Coir Pith with Wood Plastic Compos. Mater. Today: Proc., (2020).
[36] V. Dhinakaran, K. V. Surendar, M. H. Riyaz, and M. Ravichandran,. Rev. Process. Mater. Today: Proc., (2020).
[37] M. Niaounakis, Biopolymers: Appl. and Trends. William Andrew, (2015).
[38] G. Dorez, A. Taguet, L. Ferry and J. M. Lopez-Cuesta, Thermal and Fire Behavior of Natural Fibers/PBS Biocomposites. Polymer Degradation and Stability, 98(1), (2013), 87.
[39] E. Frollini, N. Bartolucci, L. Sisti and A. Celli, Ind. Crops Prod., 45, (2013), 160.
[40] S. K. Su and C. S. Wu, J. Appl. Polymer Sci., 119(2), (2011), 1211.
[41] T. Hojo, Z. Xu, Y. Yang and H. Hamada, Tensile properties of bamboo, Jute and Kenaf mat-Reinf. Compos. Energy Procedia, 56, (2014),72.
[42] A. S. Getme and B. Patel, A Rev. Bio-fiber’s as Reinforcement in Composites of Polylactic acid (PLA). Mater. Today: Proceedings, (2020).
[43] AZO Materials - Materials Testing and Development of Advanced Wind Turbine Blades https://www.azom.com/article.aspx?ArticleID=9719 (Accessed February 23,2021).
[44] M. Damiano and A. D’Ettore, 2018, June. Structural design of a multi-megawatt wind turbine blade with ONE SHOT BLADE® Technol. In J. Phys.Conf. Ser., (Vol. 1037, No. 4, IOP Publishing, (2002), 04.
[45] Compos. lab - http://compositeslab.com/composites-manufacturing-processes/open-molding/hand-lay-up/ (Accessed February 23,2021).
[46] National Research Council. Assessment of Research Needs for Wind Turbine Rotor Mater. Technol. Washington, DC: The National Academies Press., (1991) https://doi.org/10.17226/1824.