Prediction Micro-Hardness of Al-based Composites by Using Artificial Neural Network in Mechanical Alloying
Subject Areas : Journal of Environmental Friendly MaterialsR, M Babaheydari 1 , S, O Mirabootalebi 2
1 - Department of Materials Science and Engineering, Shahid Bahonar University of Kerman,Kerman, Iran
2 - Department of Materials Science and Engineering, Shahid Bahonar University of Kerman,Kerman, Iran
Keywords: Artificial Neural Network, mechanical alloying, Aluminum Alloys, Prediction Micro Hardness,
Abstract :
[1] H. Kala, K. Mer, and S. Kumar, Procedia Mater. Sci., (2014) 6, 1951.
[2] W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De. Smet, A. Hazler and A. Vieregge, Mater. Sci. Eng., A, (2000), 280(1), 37.
[3] P. Rambabu, N. Eswara Prasad, V. V. Kutumbarao and R. J. H. Wanhill, Aerospace Mater. Technol. Springer, (2017), 29.
[4] H. M. Yehia, A. O. Elkady, Y. Reda, K. E. Ashraf, Mater. Res., (2019), 72(1), 85.
[5] L. Soler, J. Macanas, M. Munoz and J. Casado, J. Power Sources, (2007), 169(1), 144.
[6] Md. T. Alam, A. H. Ansari, Md. Tanwir Alam, S. Arif and Md. Naushad Alam, Adv. Mater. Process. Technol., (2017) 3(4), 600.
[7] S. Kandemir, A. Yalamanchili, and H. V. Atkinson., Key Eng. Mater., (2012), 504-506, 339.
[8] H. J. Roven, H. Nesboe, J. C. Werenskiold, T. Seibert, Mater. Sci. Eng., A, (2005), 410, 426.
[9] J. B. Fogagnolo, F. Velasco, M. H. Robert and J. M. Torralba, Mater. Sci. Eng., A, (2003), 342(1-2), 131.
[10] A. Canakci, F. Erdemir, T. Varol and A. Patir, Powder Technol., (2012) 228, 26.
[11] A. Canakci, F. Erdemir, T. Varol and A. Patir, Anal. Meas., (2013), 46(9), 3532.
[12] A. Sinha, S. Sikdar (Dey), P. P. Chattopadhyay and S. Datta, Mater. Des., (2013), 46, 227.
[13] R. P. Lippmann, Anintroduction to computing with neural nets. IEEE Assp magazine,(1987),4(2), 4.
[14] T. Varol, A. Canakci and S. Ozsahin, Part B: Eng., (2013) 54, 224.
[15] R. Esmaeili and M. Dashtbayazi, Expert Syst. Appl., (2014), 41(13), 5817.
[16] H. Arik, Technique. Mater. Des., (2004) 25(1), 31.
[17] M. Kubota, J. Kaneko and M. Sugamata, Mater. Sci. Eng.: A, (2008), 475(1-2), 96.
[18] S. S. Nayak, M. Wollgarten, J. Banhart, S. K. Pabi and B. S. Murty, Mater. Sci. Eng.: A, (2010), 527(9), 2370.
[19] H. Abdoli, H. Asgharzadeh and E. Salahi, J. alloys compd., (2009), 473(1-2), 116.
[20] S. Nayak, S. Pabi and B. Murty, J. Alloys Compd., (2010), 492(1-2), 128.
[21] M. Kubota and P. Cizek, J. alloys compd., (2008), 457(1-2), 209.
[22] M. S. El-Eskandarany, J. Alloys Compd., (1998), 279(2), 263.
[23] L. Kollo, M. Leparoux, C. R. Bradbury, C. Jäggi, E. Carreno-Morelli and M. Rodríguez-Arbaizar, J. Alloys Compd., (2010), 489(2), 394.
[24] R. Perez-Bustamante, I. Estrada-Guel, W. Antúnez-Flores, M. Miki-Yoshida, P. J. Ferreira and R. Martínez-Sánchez, J. Alloys compd., (2008) 450(1-2), 323.
[25] Z. Sadeghian, B. Lotfi, M. H. Enayati and P. Beiss, J.Alloys Compd., (2011), 509(29), 7758.
[26] S. Rajasekaran and G. V. Pai, Synth. app. (with cd), (2003): PHI Learning Pvt. Ltd.
[27] S. Haykin, Neural networks: a comprehensive foundation, (1994), Prentice Hall PTR.
[28] S. Vettivel, N. Selvakumar and N. Leema, Mater. Des., (2013), 45, 323.
[29] Z. Jiang, L. Gyurova, Z. Zhang, K. Friedrich and A. K. Schlarb, Mater. Des., (2008) 29(3), 628.
[30] M. Yazdanmehr, S. H. MousaviAnijdan, A. Samadi and A. Bahrami, Comput. Mater. Sci., (2009), 44(4), 1231.
[31] S. O. Mirabootalebi and R. M. Babaheyari, Prediction length of carbon nanotubes in CVD method by artificial neural network, Iran JOC, 11, 4, (2019), 2731.