Subject Areas :
1 - گروه میکروبیولوژی، واحد مراغه، دانشگاه آزاد اسلامی، مراغه، ایران
2 - استادیار گروه میکروبیولوژی، واحد مراغه، دانشگاه آزاد اسلامی ، مراغه، ایران
Keywords: Escherichia coli, Poultry colibacillosis, Virulence genes,
Abstract :
Colibacillosis is one of the most common diseases in the poultry industry, which causes a lot of economic losses every year. The aim of this research was to study of the frequency of omp T, iss and pap GII genes in Escherichia coli isolated from poultry colibacillosis in Tabriz city. 100 samples of Escherichia coli isolated from poultry colibacillosis (in 2021) were phenotypically identified by biochemical and staining methods. Then, the frequency of omp T, iss and pap GII genes in these isolates was investigated by Multiplex PCR method. The results showed that the frequency of iss, omp T and pap GII genes in the tested Escherichia coli samples were 33%, 14% and 22%, respectively. Also, 1% of the tested isolates contained all three mentioned genes simultaneously. 23 negative samples were observed in terms of the presence of studied genes. Considering the presence of iss, omp T and pap GII genes in Escherichia coli isolated from poultry, it can be concluded that these genes can be effective factors in the extraintestinal infections. Also, iss gene, due to having the highest frequency among the studied genes, can potentially be introduced as the most important pathogenic factor in Escherichia coli isolated from poultry.
Abd El-Hady, A. M., Elghalid, O. A., Elnaggar, A. S., & Abd El-khalek, E. (2022). Growth performance and physiological status evaluation of Spirulina platensis algae supplementation in broiler chicken diet. Livestock Science, 263, 105009.
Abed, S., Nowruzi, B., & Anvar, S. A. A. (2025). Production of Oncorhynchus mykiss biosensor based on polyvinyl alcohol/chitosan nanocomposite using phycocyanin during refrigerated storage. Scientific reports, 15(1), 703.
Abouelezz, F. (2017). Evaluation of spirulina algae (Spirulina platensis) as a feed supplement for japanese quail: nutiritional effects on growth performance, egg production, egg quality, blood metabolites, sperm-egg penetration and fertility. Egyptian Poultry Science Journal, 37(3), 707-719.
Ahmadi, A., Anvar, S. A. A., Nowruzi, B., & Golestan, L. (2024). Effect of phycocyanin and phycoerythrin on antioxidant and antimicrobial activity of refrigerated low-fat yogurt and cream cheese. Scientific reports, 14(1), 27661.
Al-Batshan, H. A., Al-Mufarrej, S. I., Al-Homaidan, A. A., & Qureshi, M. (2001). Enhancement of chicken macrophage phagocytic function and nitrite production by dietary Spirulina platensis. Immunopharmacology and immunotoxicology, 23(2), 281-289.
Al-Khalaifah, H. S., Al-Nasser, A., & Surrayai, T. (2022). Effects from dietary addition of sargassum sp., spirulina sp., or gracilaria sp. powder on immune status in broiler chickens. Frontiers in Veterinary Science, 9, 928235.
Alaqil, A. A., & Abbas, A. O. (2023). The effects of dietary Spirulina platensisis on physiological responses of broiler chickens exposed to endotoxin stress. Animals, 13(3), 363.
Alibabai, M., Khajeh-Rahimi, A.-E., & Nowruzi, B. (2023). A review of recent developments in the use of cyanobacteria and microalgae in improving the quality and increasing the shelf life of seafood products.
Alwaleed, E. A., El-Sheekh, M., Abdel-Daim, M. M., & Saber, H. (2021). Effects of Spirulina platensis and Amphora coffeaeformis as dietary supplements on blood biochemical parameters, intestinal microbial population, and productive performance in broiler chickens. Environmental Science and Pollution Research, 28, 1801-1811.
Anvar, A., & Nowruzi, B. (2021). Bioactive properties of spirulina: A review. Microb. Bioact, 4, 134-142.
Anvar, S., & Nowruzi, B. (2022). A review of microalgae as dietary and medicinal useful complements.
Anvar, S. A. A., Nowruzi, B., & Afshari, G. (2023). A review of the application of nanoparticles biosynthesized by microalgae and cyanobacteria in medical and veterinary sciences.
Behjati, M., Ataee, M., Nowruzi, B., Anvar, S. A. A., & Ahari, H. (2025). STUDYING THE ANTIOXIDANT AND ANTIMICROBIAL ACTIVITY OF PHYCOERYTHRIN TO INCREASE THE SHELF LIFE OF HAMBURGERS AT REFRIGERATOR TEMPERATURE. Journal of microbiology, biotechnology and food sciences, 14(5), e11625-e11625.
Bonos, E., Kasapidou, E., Kargopoulos, A., Karampampas, A., Nikolakakis, I., Christaki, E., & Florou-Paneri, P. (2016). Spirulina as a functional ingredient in broiler chicken diets. South African Journal of Animal Science, 46(1), 94-102.
Bortolini, D. G., Maciel, G. M., Fernandes, I. d. A. A., Pedro, A. C., Rubio, F. T. V., Branco, I. G., & Haminiuk, C. W. I. (2022). Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chemistry: Molecular Sciences, 5, 100134.
Chamari, M., Anvar, S. A. A., Pourahmad, R., Nowruzi, B., & Yousefi, S. (2024). Study of alginate-encapsulated phycoerythrin in promoting the biological activity of synbiotic ice cream with Lactobacillus casei. Scientific reports, 14(1), 15471.
Chen, Y.-Y., Chen, J.-C., Tayag, C. M., Li, H.-F., Putra, D. F., Kuo, Y.-H., . . . Chang, Y.-H. (2016). Spirulina elicits the activation of innate immunity and increases resistance against Vibrio alginolyticus in shrimp. Fish & shellfish immunology, 55, 690-698.
El-Shall, N. A., Jiang, S., Farag, M. R., Azzam, M., Al-Abdullatif, A. A., Alhotan, R., . . . Alagawany, M. (2023). Potential of Spirulina platensis as a feed supplement for poultry to enhance growth performance and immune modulation. Frontiers in Immunology, 14, 1072787.
Elbaz, A. M., Ahmed, A. M., Abdel-Maqsoud, A., Badran, A. M., & Abdel-Moneim, A.-M. E. (2022). Potential ameliorative role of Spirulina platensis in powdered or extract forms against cyclic heat stress in broiler chickens. Environmental Science and Pollution Research, 29(30), 45578-45588.
Fathi, M. A. (2018). Effect of dietary supplementation of algae meal (Spirulina platensis) as growth promoter on performance of broiler chickens. Egyptian Poultry Science Journal, 38(2), 375-389.
Hajati, H., & Zaghari, M. (2019). Effects of Spirulina platensis on growth performance, carcass characteristics, egg traits and immunity response of Japanese quails. Iranian Journal of Applied Animal Science, 9(2), 347-357.
Holman, B., & Malau‐Aduli, A. (2013). Spirulina as a livestock supplement and animal feed. Journal of animal physiology and animal nutrition, 97(4), 615-623.
Iry, N., Nowruzi, B., & Ghazi, S. (2023). Study of the effect of phycocyanin pigment on physicochemical, sensory, microbial and antioxidant properties of cheese. Research and Innovation in Food Science and Technology, 12(1), 55-76.
Jamil, A. R., Akanda, M. R., Rahman, M. M., Hossain, M. A., & Islam, M. S. (2015). Prebiotic competence of Spirulina on the production performance of broiler chickens.
Kaoud, H. A. (2015). Effect of Spirulina platensis as a dietary supplement on broiler performance in comparison with prebiotics. specialty journal of biological sciences, 1(2-2015), 1-6.
Kashi, M. S., Ghazi, S., & Nowruzi, B. (2024). Industrial application of Natural Phycocyanin Edible Pigment isolated from Spirulina platensis in Preparation of fortified ice cream with emphasize on microbial and antioxident properties. Iranian journal of food science and industry, 21(149).
Khan, S., Mobashar, M., Mahsood, F. K., Javaid, S., Abdel-Wareth, A., Ammanullah, H., & Mahmood, A. (2020). Spirulina inclusion levels in a broiler ration: evaluation of growth performance, gut integrity, and immunity. Tropical Animal Health and Production, 52, 3233-3240.
Kharde, S., Shirbhate, R., Bahiram, K., & Ahmadi, M., Dadashzadeh, S., Ghaniei, A. (2019). Prevalence of virulence genes in Escherichia coli isolates implicated in poultry colibacillosis and human urinary tract infection. Journal of Veterinary Microbiology, 15(1): 109-118. (In Persian)
Akond, M. A., Alam, S., Hassan, S. M. R., Shirin, M. (2015). Antibiotic resistance of Escherichia coli isolated from poultry and poultry environment of Bangladesh. Internet Journal of Food Safety, 11: 19-23ce.
Azizpour, A. (2022). A survey of Escherichia coli contamination in eggs of Ardabil and determination of their antibiotic resistance. Veterinary Researches and Biological Products, 34(4): 112-120. (In Persian)
Azizpour, A., Ghazaei, C. (2020). Evaluation of antibiotic resistance pattern of Escherichia coli isolated from broiler chickens with colibacillosis in Ardabil Province, Iran. International Journal of Basic Science in Medicine, 5(4):125- 130.
Bauchart, P., Germon, P., Bree, A., Oswald, E., Hacker, J., Dobrindt, U. (2010). Pathogenomic comparison of human extraintestinal and avian pathogenic Escherichia coli--search for factors involved in host specificity or zoonotic potential. Microbial Pathogenesis, 49(3): 105-115.
Chuba, P. J., Leon, M. A., Banerjee, A., Palchaudhuri, S. (1989). Cloning and DNA sequence of plasmid determinant iss, coding for increased serum survival and surface exclusion, which has homology with lambda DNA. Molecular and General Genetics, 216: 287–292.
Cortés, P., Blanc, V., Mora, A., Dahbi, G., Blanco, J. E., Blanco, M. (2010). Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Applied and Environmental Microbiology, 76(9):2799-2805.
Dissanayake, D. R., Wijewardana, T. G., Gunawardena, G. A., Poxton, I. R. (2008). Distribution of lipopolysaccharide core types among avian pathogenic Escherichia coli in relation to the major phylogenetic groups. Veterinary Microbiology, 132: 355-363.
Ghanbarpour, R., Salehi, M., Oswald, E. (2010). Virulence genotyping of Escherichia coli isolates from avian cellulitis in relation to phylogeny. Comparative Clinical Pathology, 19: 147-153.
Ghorbani, A. R., Khoshbakht, R., Kaboosi, H., Shirzad- Aski, H., Peyravii Ghadikolaii, F. (2021). Phylogenetic relationship and virulence gene profiles of avian pathogenic and uropathogenic Escherichia coli isolated from avian colibacillosis and human urinary tract infections (UTIs). Iranian Journal of Veterinary Research, 22(3): 203-208.
Jantunen, M. E., Siitonen, A., Koskimies, O., Wikstrom, S., Karkkainen, U., Salo, E., Saxen, H. (2000). Predominance of class II papG allele of Escherichia coli in pyelonephritis in infants with normal urinary tract anatomy. Journal of Infectious Diseases, 181: 1822–1824.
Jeffrey, J., Nolan, L., Tonooka, K., Wolfe, S., Giddings, C., Horne, S. (2002). Virulence factors of Escherichia coli from cellulitis or colisepticemia lesions in chickens. Avian diseases, 46(1):48-52.
Johnson, T. J., Wannemuehler, Y., Doetkott, C., Johnson, S. J., Rosenberger, S. C., Nolan, L. K. (2008). Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. Journal of Clinical Microbiology, 46: 3987- 3996.
Johnson, T. J., Wannemuehler, Y. M., Nolan, L. K. (2008). Evolution of the iss gene in Escherichia coli. Applied and Environmental Microbiology, 74(8):2360-9.
Kafshdouzan, Kh., Zahraei-Salehi, T., Nayeri, B., Madadgar, O., Yamasaki, S., Hinenoya, A., Yasuda, N. (2013). Distribution of virulence associated genes in isolated Escherichia coli from avian colibacillosis. Iranian Journal of Veterinary Medicine, 7(1): 1-6.
Kwon, S. G., Cha, S. Y., Choi, E. J., Kim, B., Song, H. J., Jang, H. K. (2008). Epidemiological prevalence of avian pathogenic Escherichia coli differentiated by multiplex PCR from commercial chickens and hatchery in Korea. Journal of Bacteriology and Virology, 38(4): 179-188.
Mellata, M. (2013). Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathogens and Diseases, 10:916–932.
Mokady, D., Gophna, U., Ron, E. Z. (2005). Extensive gene diversity in septicemic Escherichia coli strains. Journal of Clinical Microbiology, 43(1): 66-73.
Monroy, M. A., Kno¨bl, T., Bottino, J. A., Ferreira, C. S., Ferreira, A. J. (2005) Virulence characteristics of Escherichia coli isolates obtained from broiler breeders with salpingitis. Comparative Immunology, Microbiology and Infectious Diseases, 28: 1-15.
Moulin-Schouleur, M., Schouler, C., Tailliez, P., Kao, M. R, Brée, A., Germon, P., Oswald, E., Mainil, J., Blanco, M., Blanco, J. (2006). Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. Journal of Clinical Microbiology, 44(10): 3484-3492.
Najafi, S., Rahimi, M., Nikousefat, Z. (2019). Extra-intestinal pathogenic Escherichia coli from human and avian origin: Detection of the most common virulence-encoding genes. Veterinary Research Forum, 10(1): 43-49.
Nakazato, G., de Campos, T. A., Stehling, E. G., Brocchi, M., da Silveira, W. D. (2009). Virulence factors of avian pathogenic Escherichia coli (APEC). Pesquisa Veterinaria Brasileira, 29(7): 479-486.
Nateghi, F., Jafarpour, M., Nazemi, A. (2010). A survey for detection of eight correlated genes of avian pathogenic Escherichia coli in human uropathogenic Escherichia coli. Journal of Microbial World, 3(3): 169-176. (In Persian)
Okuno, K., Yabuta, M., Ooi, T., Kinoshita, S. (2004). Utilization of Escherichia coli outer-membrane endoprotease ompT variants as processing enzymes for production of peptides from designer fusion proteins. Applied and Environmental Microbiology, 70: 76-86.
Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J., Fakhr, M. K., Nolan, L. K. (2005). Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology, 151:2097– 2110.
Russo, T. A., Johnson, J. R. (2003). Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes and Infection, 5:449-456.
Sunwoo, H. H, Wang, W. W, Sim, J. S. (2006). Detection of Escherichia coli O157 Ahmadi, M., Dadashzadeh, S., Ghaniei, A. (2019). Prevalence of virulence genes in Escherichia coli isolates implicated in poultry colibacillosis and human urinary tract infection. Journal of Veterinary Microbiology, 15(1): 109-118. (In Persian)
Akond, M. A., Alam, S., Hassan, S. M. R., Shirin, M. (2015). Antibiotic resistance of Escherichia coli isolated from poultry and poultry environment of Bangladesh. Internet Journal of Food Safety, 11: 19-23ce.
Azizpour, A. (2022). A survey of Escherichia coli contamination in eggs of Ardabil and determination of their antibiotic resistance. Veterinary Researches and Biological Products, 34(4): 112-120. (In Persian)
Azizpour, A., Ghazaei, C. (2020). Evaluation of antibiotic resistance pattern of Escherichia coli isolated from broiler chickens with colibacillosis in Ardabil Province, Iran. International Journal of Basic Science in Medicine, 5(4):125- 130.
Bauchart, P., Germon, P., Bree, A., Oswald, E., Hacker, J., Dobrindt, U. (2010). Pathogenomic comparison of human extraintestinal and avian pathogenic Escherichia coli--search for factors involved in host specificity or zoonotic potential. Microbial Pathogenesis, 49(3): 105-115.
Chuba, P. J., Leon, M. A., Banerjee, A., Palchaudhuri, S. (1989). Cloning and DNA sequence of plasmid determinant iss, coding for increased serum survival and surface exclusion, which has homology with lambda DNA. Molecular and General Genetics, 216: 287–292.
Cortés, P., Blanc, V., Mora, A., Dahbi, G., Blanco, J. E., Blanco, M. (2010). Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Applied and Environmental Microbiology, 76(9):2799-2805.
Dissanayake, D. R., Wijewardana, T. G., Gunawardena, G. A., Poxton, I. R. (2008). Distribution of lipopolysaccharide core types among avian pathogenic Escherichia coli in relation to the major phylogenetic groups. Veterinary Microbiology, 132: 355-363.
Ghanbarpour, R., Salehi, M., Oswald, E. (2010). Virulence genotyping of Escherichia coli isolates from avian cellulitis in relation to phylogeny. Comparative Clinical Pathology, 19: 147-153.
Ghorbani, A. R., Khoshbakht, R., Kaboosi, H., Shirzad- Aski, H., Peyravii Ghadikolaii, F. (2021). Phylogenetic relationship and virulence gene profiles of avian pathogenic and uropathogenic Escherichia coli isolated from avian colibacillosis and human urinary tract infections (UTIs). Iranian Journal of Veterinary Research, 22(3): 203-208.
Jantunen, M. E., Siitonen, A., Koskimies, O., Wikstrom, S., Karkkainen, U., Salo, E., Saxen, H. (2000). Predominance of class II papG allele of Escherichia coli in pyelonephritis in infants with normal urinary tract anatomy. Journal of Infectious Diseases, 181: 1822–1824.
Jeffrey, J., Nolan, L., Tonooka, K., Wolfe, S., Giddings, C., Horne, S. (2002). Virulence factors of Escherichia coli from cellulitis or colisepticemia lesions in chickens. Avian diseases, 46(1):48-52.
Johnson, T. J., Wannemuehler, Y., Doetkott, C., Johnson, S. J., Rosenberger, S. C., Nolan, L. K. (2008). Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. Journal of Clinical Microbiology, 46: 3987- 3996.
Johnson, T. J., Wannemuehler, Y. M., Nolan, L. K. (2008). Evolution of the iss gene in Escherichia coli. Applied and Environmental Microbiology, 74(8):2360-9.
Kafshdouzan, Kh., Zahraei-Salehi, T., Nayeri, B., Madadgar, O., Yamasaki, S., Hinenoya, A., Yasuda, N. (2013). Distribution of virulence associated genes in isolated Escherichia coli from avian colibacillosis. Iranian Journal of Veterinary Medicine, 7(1): 1-6.
Kwon, S. G., Cha, S. Y., Choi, E. J., Kim, B., Song, H. J., Jang, H. K. (2008). Epidemiological prevalence of avian pathogenic Escherichia coli differentiated by multiplex PCR from commercial chickens and hatchery in Korea. Journal of Bacteriology and Virology, 38(4): 179-188.
Mellata, M. (2013). Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathogens and Diseases, 10:916–932.
Mokady, D., Gophna, U., Ron, E. Z. (2005). Extensive gene diversity in septicemic Escherichia coli strains. Journal of Clinical Microbiology, 43(1): 66-73.
Monroy, M. A., Kno¨bl, T., Bottino, J. A., Ferreira, C. S., Ferreira, A. J. (2005) Virulence characteristics of Escherichia coli isolates obtained from broiler breeders with salpingitis. Comparative Immunology, Microbiology and Infectious Diseases, 28: 1-15.
Moulin-Schouleur, M., Schouler, C., Tailliez, P., Kao, M. R, Brée, A., Germon, P., Oswald, E., Mainil, J., Blanco, M., Blanco, J. (2006). Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. Journal of Clinical Microbiology, 44(10): 3484-3492.
Najafi, S., Rahimi, M., Nikousefat, Z. (2019). Extra-intestinal pathogenic Escherichia coli from human and avian origin: Detection of the most common virulence-encoding genes. Veterinary Research Forum, 10(1): 43-49.
Nakazato, G., de Campos, T. A., Stehling, E. G., Brocchi, M., da Silveira, W. D. (2009). Virulence factors of avian pathogenic Escherichia coli (APEC). Pesquisa Veterinaria Brasileira, 29(7): 479-486.
Nateghi, F., Jafarpour, M., Nazemi, A. (2010). A survey for detection of eight correlated genes of avian pathogenic Escherichia coli in human uropathogenic Escherichia coli. Journal of Microbial World, 3(3): 169-176. (In Persian)
Okuno, K., Yabuta, M., Ooi, T., Kinoshita, S. (2004). Utilization of Escherichia coli outer-membrane endoprotease ompT variants as processing enzymes for production of peptides from designer fusion proteins. Applied and Environmental Microbiology, 70: 76-86.
Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J., Fakhr, M. K., Nolan, L. K. (2005). Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology, 151:2097– 2110.
Russo, T. A., Johnson, J. R. (2003). Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes and Infection, 5:449-456.
Sunwoo, H. H, Wang, W. W, Sim, J. S. (2006). Detection of Escherichia coli O157: H7 using chicken immunoglobulin Y. Immunology letters, 106(2):191-3.
Zhao, L., Gao, S., Huan, H., Xu, X., Zhu, X., Yang, W., Gao, Q., Liu, X. (2009). Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiology, 155(Pt 5): 1634-1644.
: H7 using chicken immunoglobulin Y. Immunology letters, 106(2):191-3.
Zhao, L., Gao, S., Huan, H., Xu, X., Zhu, X., Yang, W., Gao, Q., Liu, X. (2009). Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiology, 155(Pt 5): 1634-1644.
Nipane, S. (2012). Effect of Spirulina supplementation on growth performance of broilers. Indian Journal of Veterinary Research (The), 21(1), 66-69.
Mirzaie, S., Zirak-Khattab, F., Hosseini, S. A., & Donyaei-Darian, H. (2018). Effects of dietary Spirulina on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature. Asian-Australasian journal of animal sciences, 31(4), 556.
Mohammad Shirazi, R. H. S., Tala, M., Anvar, S. A. A., Nowruzi, B., Saeidi, Z., & Negahban, M. (2021). Investigating Nitrate and Nitrite Concentrations in Drinking Water of Five Districts in Tehran and Assessing the Presence of Nitrate Reducing Bacteria. Journal of Chemical Health Risks, 11(3).
Nowruzi, B. (2024). Industrial application of Natural Phycocyanin Edible Pigment isolated from Spirulina platensis in Preparation of fortified ice cream with emphasize on microbial and antioxident properties. Journal of food science and technology (Iran), 21(149), 54-80.
Nowruzi, B., & Bagheri, F. (2023). An Overview of the Probiotics, Prebiotics, and Metabiotics Functions of Microalgae. Journal of Biosafety, 16(3), 99-124.
Nowruzi, B., & Beiranvand, H. (2024a). A review of medical applications of cyanobacteria. Journal of Isfahan Medical School, 42(755), 69-83.
Nowruzi, B., & Beiranvand, H. (2024b). A review of medical applications of cyanobacteria. Journal of Isfahan Medical School.
Nowruzi, B., Jafari, M., Babaie, S., Motamedi, A., & Anvar, A. (2020). Spirulina: A healthy green sun with bioactive properties. Journal of Microbial World, 13(4), 322-348.
Qureshi, M., Kidd, M., & Ali, R. (1996). Spirulina platensis extract enhances chicken macrophage functions after in vitro exposure. Journal of Nutritional Immunology, 3(4), 35-45.
Satyaraj, E., Reynolds, A., Engler, R., Labuda, J., & Sun, P. (2021). Supplementation of diets with spirulina influences immune and gut function in dogs. Frontiers in Nutrition, 8, 667072.
Selim, S., Hussein, E., & Abou-Elkhair, R. (2018). Effect of Spirulina platensis as a feed additive on laying performance, egg quality and hepatoprotective activity of laying hens. European Poultry Science, 82, 1-13.
Seyidoglu, N., Inan, S., & Aydin, C. (2017). A prominent superfood: Spirulina platensis. Superfood and functional food the development of superfoods and their roles as medicine, 22, 1-27.
Shafaei Bajestani, M., Anvar, S. A. A., Nowruzi, B., & Golestan, L. (2000). Production of Cheese and Ice Cream Enriched With Biomass and Supernatant of Spirulina platensis With Emphasis on Organoleptic and Nutritional Properties. Iranian Journal of Veterinary Medicine, 18(2), 263-278.
Shanmugapriya, B., Babu, S. S., Hariharan, T., Sivaneswaran, S., & Anusha, M. (2015). Dietary administration of Spirulina platensis as probiotics on growth performance and histopathology in broiler chicks. Int. J. Recent Sci. Res, 6(2), 2650-2653.
Sugiharto, S., Yudiarti, T., Isroli, I., & Widiastuti, E. (2018). Effect of feeding duration of Spirulina platensis on growth performance, haematological parameters, intestinal microbial population and carcass traits of broiler chicks. South African Journal of Animal Science, 48(1), 98-107.
Valikboni, S. Q., Anvar, S. A. A., & Nowruzi, B. (2024). Study of the effect of phycocyanin powder on physicochemical characteristics of probiotic acidified feta-type cheese during refrigerated storage. Nutrire, 49(2), 41.