Lorenz hyper chaotic system parameter estimation using improved whale optimization algorithm with Tabu Search
Subject Areas : Electrical engineering (electronics, telecommunications, power, control)Mahsa Esmaeilnia 1 , Mostafa Saadatifar 2 , Mahdi Yaghoobi 3
1 -
2 - دانشجوی رشته هوش مصنوعی و رباتیکز، دانشگاه آزاد اسلامی، واحد مشهد، مشهد، ایران
3 - Computer Engineering Department, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
Keywords: hyper chaotic system, parameter estimation, whale optimization algorithm,
Abstract :
Lorenz hyper chaotic system parameter estimation using improved whale optimization algorithm with Tabu Search Chaotic systems are very complex dynamic systems that have some special characteristics such as high sensitivity to initial conditions, lack of statistical prediction, and despite seemingly random behavior, chaotic systems are completely deterministic. Estimation of parameters of super-chaotic oscillators is one of the most important issues in the field of chaos. Parameter estimation of hyper-chaotic systems can be considered as a multivariate optimization problem. This article aims to present a new method for estimating the parameters of the superchaotic Lorenz system based on the improvement of the whale algorithm with the forbidden search algorithm. The simulation results show that the whale algorithm has a high competitive power compared to similar meta-heuristic algorithms. Estimation of parameters of super-chaotic oscillators is one of the most important issues in the field of chaos. Parameter estimation of hyper-chaotic systems can be considered as a multivariate optimization problem. This article aims to present a new method for estimating the parameters of the superchaotic Lorenz system based on the improvement of the whale algorithm with the forbidden search algorithm. The simulation results show that the whale algorithm has a high competitive power compared to similar meta-heuristic algorithms.
[1]. Jing, Z., Xu, D., Chang, Y., & Chen, L. (2003). Bifurcations, chaos, and system collapse in a three node power system. International journal of electrical power & energy systems, 25(6), 443-461.
[2]. Alvarez, G., Montoya, F., Romera, M., & Pastor, G. (2004). Breaking parameter modulated chaotic secure communication system. Chaos, Solitons & Fractals, 21(4), 783-787.M. H. Khooban, A. Alfi, D.N.M Abadi Control of a class of non-linear uncertain chaotic systems via an optimal Type-2 fuzzy proportional integral derivative controller, IET Science, Measurement &Technology, 2013, 7, (1), pp. 50-58.
[3]. Ursem, R. K., & Vadstrup, P. (2004). Parameter identification of induction motors using stochastic optimization algorithms. Applied Soft Computing, 4(1), 49-64.
[4]. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67.
[5]. Mousavi, Y., & Alfi, A. (2018). Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems. Chaos, Solitons & Fractals, 114, 202-215.
[6]. Peng, B., Liu, B., Zhang, F. Y., & Wang, L. (2009). Differential evolution algorithm-based parameter estimation for chaotic systems. Chaos, Solitons & Fractals, 39(5), 2110-2118.
[7]. Xu, S., Wang, Y., & Liu, X. (2018). Parameter estimation for chaotic systems via a hybrid flower pollination algorithm. Neural Computing and Applications, 30(8), 2607-2623.
[8]. Lazzús, J. A., Rivera, M., & López-Caraballo, C. H. (2016). Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm. Physics Letters A, 380(11-12), 1164-1171.
[9]. Peng, B., Liu, B., Zhang, F. Y., & Wang, L. (2009). Differential evolution algorithm-based parameter estimation for chaotic systems. Chaos, Solitons & Fractals, 39(5), 2110-2118.
[10]. Xu, S., Wang, Y., & Liu, X. (2018). Parameter estimation for chaotic systems via a hybrid flower pollination algorithm. Neural Computing and Applications, 30(8), 2607-2623.
[11]. Lazzús, J. A., Rivera, M., & López-Caraballo, C. H. (2016). Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm. Physics Letters A, 380(11-12), 1164-1171.
[12]. Panahi, S., Jafari, S., Pham, V. T., Kingni, S. T., Zahedi, A., & Sedighy, S. H. (2016). Parameter identification of a chaotic circuit with a hidden attractor using Krill herd optimization. International Journal of Bifurcation and Chaos, 26(13), 1650221.
[13]. Gao, X., & Hu, H. (2015). Adaptive–impulsive synchronization and parameters estimation of chaotic systems with unknown parameters by using discontinuous drive signals. Applied Mathematical Modelling, 39(14), 3980-3989.
[14]. Li, X., & Yin, M. (2014). Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dynamics, 77(1-2), 61-71.
[15]. Mousavi,Y., Alfi ,A.&Kucucdemiral, I.(2020). Enhanced Fractional Chaotic Whale Optimization Algorithm for Parameter Identification of Isolated Wind-Diesel Power Systems. IEEE Access, vol. 8, pp. 140862-140875, 2020, doi: 10.1109/ACCESS.2020.3012686.
[16]. Wang, S., Hu, W.,Riego I.,& Yu Y.(2022). Improved surrogate-assisted whale optimization algorithm for fractional chaotic systems ’ parameters identification. Engineering Applications of Artificial Intelligence Volume 110, April 2022, 104685.
[17]. Adhirai, S., Mahapatra, R. P., & Singh, P. The Whale Optimization Algorithm and Its Implementation in MATLAB.