Remediation of Environment via Metallic Iron Nanoparticles
Subject Areas : Water and Environmentmohammad reza Kamali 1 , Alireza Kamali 2 , Seyyed Mohammad Mohajerzadeh 3 , javad Fahim 4
1 - Islamic Azad University-Science and Research Branch
2 - Malek Ashtar University of Technology
3 - Madi University of Moscow
4 - Islamic Azad University-South Tehran Branch
Keywords: Remediation- Nanoparticles- Ir,
Abstract :
Metallic powders have an important role in detectionand pollutant remediation from environment. Inthis way, iron nanoparticles has served as a newmaterial for environmental remediation. Thereforan economical solutions for many environmentalchallenges in the fields of pollutants elimination havebeen invented. Metallic oxide such as TiO2 in ananometric scale as a cheap material, have abilityfor using in photocatalytic process and remediation.In this article in addition of reviewing the propertiesof metallic and oxide nanoparticles in environmentalremediation process, remediation process by metalliciron nanoparticles was investigated and for instance,the remediation process of hexavalent chromium withthese nanoparticles have been illustrated.
1. Wei-xian Zhang;2003; Nanoscale iron particles for
environmental remediation: An overview; Journal of
Nanoparticle Research. 2003 ,332–323 :5.
. 2آزاده اخــوان بلورچیــان، محمدرضا کمالی ومحمدحســین گلشــنی، نانو
فناوری و کاربرد آن در مهندسی محیط زیست، فصلنامه دنیاى نانو، شمارهی
دهم، سال چهارم، بهار.1387
3 . Kong; J.; et al. Science 17 .625–622 ;287 ;2000.
Cui; Y.; Wei; Q.; Park; H.; Lieber; C. M. Science ;2001
1292–1289;293.
4 . Kamat; P. V.; Huehn; R.; Nicolaescu; R. J. Phys.
Chem. B. 794–788 ;106 ;2002.
5 . Subramanian; V.; Wolf; E.; Kamat; P. V. J. Phys.
Chem. B 446;11–439;11 ;105 ;2001.
6 . PrashantV. Kamat, Dan Meisel;2003; Nanoscience
opportunities in environmental remediation; C. R.
Chimie 1007–999 6.
7 . P.V. Kamat, D. Meisel, Nanoparticles in Advanced
Oxidation Processes, Curr. Opin. Colloid Interface Sci.
282 (2002) 7.
8 . A. Fujishima, K. Hashimoto, T.Watanabe, TiO2
photocatalysis. Fundamentals and Applications, Bkc,
Inc. Tokyo, Japan, 1999.
9 . P.V. Kamat, Photochemistry on nonreactive and
reactive (semiconductor) surfaces, Chem. Rev. 93
267 (1993).
10 . M.R. Hoffmann, S.T. Martin, W. Choi, D.W.
Bahnemann, Environmental applications of
semiconductor photocatalysis, Chem. Rev. (1995) 95
69.
11 . N. Serpone, Relative phtotonic efficiencies and
quantum yields in heterogeneous photocatalysis, J.
Photochem. Photobiol. A: Chem. 1 (1997) 104.
12 . Zhang; W.-X.; Wang; C.-B.; Lien; H.-L. Catal.
Today 395–387 ;40 ;1998.
13 . Elliott; D. W.; Zhang; W.-X. Environ. Sci. Technol.
4926–4922 ;35 ;2001
4 . 1A.J. Bard, Design of semiconductor
photoelectrochemical systems for solar energy
conversion, J. Phys. Chem. 172(1982) 86.
-15 N. Chandrasekharan, P.V. Kamat, Improving the
photoelectrochemical performance of nanostructured
TiO2 films by adsorption of gold nanoparticles, J.
Phys. Chem. B 10851 (2000) 104.
16 . V. Subramanian, E.E. Wolf, P.V. Kamat, Green
emission to probe photoinduced charging events
in ZnO–Au nanoparticles. Charge distribution and
Fermi-level equilibration, J. Phys. Chem. B (2003) 107
7485–7479.
17 . Gillham R.W. & S.F. O’Hannesin, 1994.
Enhanced degradation of halogenated aliphatics by
zero-valent iron. Ground Water 967–958 ,32
18 . O’Hannesin S.F. & R.W. Gillham, 1998.
Long-term performance of an in situ ‘ironwall’ for
remediation ofVOCs. GroundWater 170–164 ,36.
19 . EPA (US Environmental Protection Agency),
2003c. Databases of innovative technologies. http://
www.epa.gov/tio/databases
20 . Wang C. & W. Zhang, 1997. Nanoscale metal
particles for dechlorination of PCE and PCBs. Environ.
Sci. Technol. 2156–2154 ,(7)31.
21 . Xu Y. & W. Zhang, 2000. Subcolloidal Fe/Ag
particles for reductive dehalogenation of chlorinated
benzenes. Indus. Eng. Chem. Res. 2244–2238 ,(7)39.
22 . Ponder S.M., J.G. Darab & T.E. Mallouk, 2000.
Remediation of Cr(VI) and Pb(II) aqueous solutions
using supported, nanoscale zero-valent iron. Environ.
Sci. Technol. 2569–2564 ,34.
23 . Ponder S., J.G. Darab, J. Bucher, D. Caulder,
I. Craig, L. Davis, N. Edelstein, W. Lukens, H.
Nitsche, L. Rao, D.K. Shuh & T.E. Mallouk. 2001.
Surface chemistry and electrochemistry of supported
zerovalent iron nanoparticles in the remediation of
aqueous metal contaminants. Chem. Mater. ,(2)13
486–479.
24 . Lien H., 2000. Nanoscale bimetallic particles for
dehalogenation of halogenated aliphatic compounds.
Unpublished
Dissertation, Lehigh University, Bethlehem,
Pennsylvania.
25 . Bowman, R.S., 2003. Applications of urfactantmodified zeolites to environmental remediation.
Microporous and Buerge, I.J., Hug, S.J., 1999.
Influence of mineral surfaces on chromium(VI)
reduction by iron(II). Environ. Sci. Technol., -33:4285
4291.
26 . Chen, J.M., Hao, O.J., 1998. Microbial
chromium(VI) reduction. Critical Rev. Environ. Sci.
Technol., 251-28:219.
27 . Hua, B., Deng, B., 2003. Influences of water
vapor on Cr(VI)
reduction by gaseous hydrogen sulfide. Environ. Sci.
Technol., 4777-37:4771.
28 . Buerge, I.J., Hug, S.J., 1999. Influence of mineral
surfaces on chromium(VI) reduction by iron(II).
Environ. Sci. Technol., 4291-33:4285.
29 . Alowitz, M.J., Scherer, M.M., 2002. Kinetics of
nitrate, nitrite, and Cr(VI) reduction by iron metal.
Environ. Sci. Technol., 306-36:299.
30 . NIU Shao-feng, LIU Yong, XU Xin-hua, LOU
Zhang-hua, 2005 , Removal of hexavalent chromium
from aqueous solution by iron nanoparticles,Journal of
Zhejiang University SCIENCE
31 . Beshoy Latif, August 2006, Nanotechnology for
Site Remediation: Fate and Transport of Nanoparticles
in Soil and Water Systems, University of Arizona, U.S.
Environmental Protection Agency.