Evaluating the efficiency of artificial neural network in prediction of Electrical conductivity of Zarrinehroud River
Subject Areas : Water and EnvironmentAli Khoshnazar 1 , Touraj Nasrabadi 2 , Pouyan Abbasi Maedeh 3
1 - Professor of University, Environmental Faculty, Tehran, Iran.
2 - Assistant Professor, Environmental faculty, Tehran University, Iran.
3 - MSc Student, International Aras Campus , Tehran University, Iran.
Keywords: Zarrinehroud, Electro conductivity, Neural Network, Prediction,
Abstract :
Sixteen stations on Zarrinehroud River were sampled and parameters like temperature, alkalinity, Ph, electrical conductivity, dissolved oxygen and major anions and cations were measured on water samples. Afterwards, Pearson correlation coefficient between EC and other parameters were determined and the ones with lower cost of measurement were considered as the inputs of neural network models. Finally, the model number 5 with tangent Simulating algorithm and Levenberg-Marquet training Algorithm with minimum prediction error was accepted. The maximum determination coefficient, RMSE and NRMSE Were estimated to be 0.98, 168.33 and 0.28 respectively. Furthermore, it is observed that pH has a remarkable sensitivity more over 60 percent on the artificial neural network prediction.
- Asghari Moghaddam, A., Nadiri, A. and Fijani, E. 2006. Ability to Study Different Models of Artificial Neural Networks to Evaluate Groundwater Water Level in the Hard Formation, Tenth. Conference of Geological Society, Tehran.
- Dehghani, A.A., Asgari, M. and Mosaedi, A. 2009. Comparison of Geostatistics, Artifitial Neural Networks and Adaptive Neuro-Fuzzy Inference System Approaches in Groundwater Level Interpolation (Case study: Ghazvin aquifer). Journal of Agriculture Science Natural Resource.16 (1): 517-528.
- Esmaeili Varaki, M., Khayat khalaghi, M. and Shafiei, M. 2004. Provide a Model for Intelligent Water Level Fluctuations Estimated Alluvial Groundwater Aquifer Using an Artificial Neural Network. Articles First Annual Conference of Iran Water Resources Management. 1-11.
- Coppola, E., Szidarovszky, F., Poulton, M. and Charles, E. 2003. Artificial Neural Network Approach for Predicting Transient Water Levels in a Multi Layered Groundwater System under Variable State. Pumping, and Climate Conditions, Hydrologic Engineering. 8 (6): 348-360.
- Coulibaly, P., Anctil, F., Aravena, R. and Bobée, B. 2001. Artificial Neural Network Modeling of Water Table Depth Fluctuations. Water Resources Research. 37(4): 885-896.
- Zare Abyaneh, H., Bayat Varkeshi, M., and Daneshkare Arasteh, P. 2011. Forecasting Nitrate Concentration in Groundwater using Artificial Neural Network and Linear Regression Models. International Agrophysics. 25 (2): 187-192.
- Zare abyaneh, H., Yazdani, V. and Azhdari, KH. 2009. Comparative Study of Four Meteorological Drought Index Based on Relative Yield of Rain Fed Wheat in Hamedan Province. Physical Geography Research Quarterly. 69: 35-49.
- مهردادی ن، عباسی مائده پ .1391. کیفی آب زیر زمینی شهر تهران به کمک شاخص جهانی WHO، نشریه بین المللی عمران آب شماره 64 .
- Asadpour, G.A., Nasrabadi, T. 2011. Municipal and medical solid waste management in different districts of Tehran, Iran. Fresenius Environmental Bulletin. 20 (12): 3241-3245.
- Mehrdadi, N., Hasanlou, H., Jafarzadeh, M.T., Hasanlou, H., Abodolabadi, H. 2012. Simulation of low TDS and biological units of fajr industrial wastewater Treatment plant using artificial neural network and principal component analysis hybrid method. journal of water resource and protection. 4: 370-376
- Mehrdadi, N., Nabi bidhendi, G.R., Nasrabadi, T., Hoveidi, H., Amjadi, M., Shojaee, M.A.2009. Monitoring the arsenic concentration in groundwater resources, case study: Ghezel ozanWater Basin,Kurdistan, Iran. Asian Journal of Chemistry 21 (1): 446-450.
- Nasrabadi, T., Nabi Bidhendi, G.R., Yavari., A.R, Mohammadnejad, S. 2008. Evaluating Citizen Attitudes and Participation in Solid Waste Management in Tehran, Iran. Journal of Environmental Health. 71 (5): 30-33.
- Jamshidzadeh, Z., Mirbagheri, S. A. 2011. Evaluation of groundwater quantity and quality in the Kashan Basin, Central Iran. Desalination, 270: 23–30.
- Tahmasebi, A.R. and Zomorrodian, S.M.A. 2004. Estimation of Soil Liquefaction Potential Using Artificial Neural Network. Second National Student Conference on Water and Soil Resources.
- Baghvand, A.,Nasrabadi, T., Nabi Bidhendi, G.R., Vosoogh,A., Karbassi, A.R., Mehrdadi, N. 2010. Groundwater quality degradation of an aquifer in Iran central desert. Desalination. 260: 264–275.
- Biswas, A. 2005. An Assessment of Future Global Water Issues. Water Resources Development Journal. 21 (2): 229-237.
- Sreekanth, P.D., Geethanjali, N., Sreedevi, P.D., Shakeel Ahmed, N. and Kamala Jayanthi, P.D. 2009. Forecasting Groundwater Level Using Artificial Neural Networks. Current Science. 96 (7): 933- 939.
- Kumar, M., Raghuwanshi, N., Singh, R., Wallender, W. and Pruitt, W. 2002. Estimating Evapotranspiration Using Artificial Neural Networks. Journal of Irrigation and Drainage Engineering, ASCE. 128 (4): 224-233.
- Hosaini, M.T., Siosemarde, A. Fathi, P. and Siosemarde, M. 2007. Application of Artificial Neural Networks (ANN) and Multiple Regressions for Estimating Assessing the Performance of Dry Farming Wheat Yield in Ghorveh Region, Kurdistan Province. Agricultural Research: Water and Soil and Plant. 7 (1): 41-54.
- Khalili, S.R., Davari, K. and Mousavi Baygi, M. 2008. Monthly Precipitation Forecasting Using Artificial Neural Networks: A Case Study For Synoptic Station of Mashad. Journal Water and Soil, Agricultural Science & Technology Ferdowsi University of Mashhad. 22(1): 39-99.
- Zare Abyaneh, H., Bayat Varkeshi, M., Marofi, S. and Amiri Chayjan, R. 2010. Evaluation of Artificial Neural Network and Adaptive Neuro Fuzzy Inference System in Decreasing of Reference Evapotranspiration Parameters. Journal of Water and Soil. 24 (2): 297-305.