جواب دقیق به فرم بسته برای انتقال حرارت از فین تابشی به شکل مستطیل
Subject Areas : International Journal of Industrial Mathematicsالیاس شیوانیان 1 , فاطمه سهرابی 2
1 - گروه ریاضی کاربردی، دانشگاه بین المللی امام خمینی، قزوین، ایران.
2 - گروه ریاضی کاربردی، دانشگاه بین المللی امام خمینی، قزوین، ایران.
Keywords: جواب تحلیلی دقیق, جواب یکتا, توزیع دما, بازدهی فین, نرخ انتقال,
Abstract :
در این مقاله، مساله تعیین انتقال حرارت از فین تابشی به شکل مستطیل بررسی می شود. ما حرارت یک بعدی و پایا در پره در نظر می گیریم و از تبادل تابشی بین پره های مجاور و بین پره و سطح اولیه آن صرفنظر می کنیم. نشان داده می شود که معادله فین حاکم، که یک معادله دیفرانسیل درجه دوم غیر خطی است، بصورت دقیق قابل حل است. جوابهای تحلیلی دقیق و به فرم بسته به شکل ضمنی برای تفسیر فیزیکی و بهینه سازی برای حداکثر انتقال حرارت مناسب ارایه می شود. علاوه بر این، جواب تحلیلی دقیق برای سرعت انتقال حرارت و بازده فین می شود.
[1] S. Abbasbandy, E. Shivanian, Exact analytical solution of a nonlinear equation arising in heat transfer, Physics Letters A 374 (2010) 567574.
[2] A. Akg¨ul, M. S. Hashemi, Grouppreserving scheme and reproducing kernel method for the poissonboltzmann equation for semiconductor devices, Nonlinear Dynamics 88 (2017) 28172829.
[3] C. Arslanturk, Analysis of thermal performance of annular fins with variable thermal conductivity by homotopy analysis method. Isi Bilimi ve Teknigi Dergisi, J. Therm Sci Technol. 30 (2010) 1-7.
[4] J. Bartas, W. Sellers, Radiation fin effectiveness, Journal of Heat Transfer 82 (1960) 7375.
[5] A. Campo, D. J. Celentano, Absolute maximum heat transfer rendered by straight fins with quarter circle profile using finite element analysis, Applied Thermal Engineering 105 (2016) 8592.
[6] E. Cuce, P. Cuce, Homotopy perturbation method for temperature distribution, fin efficiency and fin effectiveness of convective straight fins with temperature-dependent thermal conductivity, Proc Inst Mech Eng Part C: J Mech Eng Sci. 227 (2013) 17541760.
[7] E. Cuce, P. Cuce, A successful application of homotopy perturbation method for efficiency and effectiveness assessment of longitudinal porous fins, Energy Conver Manage 93 (2015) 9299.
[8] P. Cuce, E. Cuce, Effects of concavity level on heat loss, effectiveness and efficiency of a longitudinal fin exposed to natural convection and radiation, Int. J. Numer. Meth. Heat. Fluid. Flow 23 (2013) 1169-1178.
[9] D. Ganji, M. Rahimi, M. Rahgoshay, Determining the fin efficiency of convective straight fins with temperature dependent thermal conductivity by using homotopy perturbation method, Int. J. Numer. Meth. Heat. Fluid Flow 22 (2012) 263-272.
[10] M. S. Hashemi, Constructing a new geometric numerical integration method to the nonlinear heat transfer equations, Communications in Nonlinear Science and Numerical Simulation 22 (2015) 990-1001.
[11] M. S. Hashemi, D. Baleanu, Lie symmetry analysis of fractional differential equations, CRC Press, 2020.
[12] M. S. Hashemi, E. Darvishi, D. Baleanu, A geometric approach for solving the densitydependent diffusion nagumo equation, Advances in Difference Equations 12 (2016) 113.
[13] M. Hatami, D. Ganji, Thermal performance of circular convectiveradiative porous fins with different section shapes and materials, Energy Convers Manage 76 (2013) 185-193.
[14] M. Hatami, A. Hasanpour, D. Ganji, Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation, Energy Convers Manage. 74 (2013) 9-16.
[15] A. D. Kraus, Sixty-five years of extended surface technology 1922-1987, Appl Mech Rev. 41 (1988) 321-332.
[16] A. D. Kraus, A. Aziz, J. Welty, Extended Surface Heat Transfer, JohnWiley & Sons, New York, 2002.
[17] H. Nguyen, A. Aziz, Heat transfer from convecting-radiating fins of different profile shapes, Heat and Mass Transfer 27 (1992) 67-72.
[18] P. Razelos, X. Kakatsios, Optimum dimensions of convectingradiating fins: Part ilongitudinal fins, Applied thermal engineering 20 (1192) 1161-1192.
[19] E. Shivanian, S. Abbasbandy, M. S. Alhuthali, Exact analytical solution to the poisson-boltzmann equation for semiconductor devices, The European Physical Journal Plus 129 (2014) 11-23.
[20] E. Shivanian, S. H. Ghoncheh, A new branch solution for the nonlinear fin problem with temperaturedependent thermal conductivity and heat transfer coefficient, The European Physical Journal Plus 132 (2017) 97-112.
[21] R. K. Singla, R. Das. Application of decomposition method and inverse prediction of parameters in a moving fin, Energy Conversion and Management 84 (2014) 268-281.
[22] R. K. Singla, R. Das, Application of decomposition method and inverse prediction of parameters in a moving fin, Energy Conversion and Management 93 (2015) 458-459.
[23] M. Torabi, Q. Zhang, Analytical solution for evaluating the thermal performance and efficiency of convectiveradiative straight fins with various profiles and considering all non-linearities, Energy Convers Manage 66 (2013) 199-210.
[24] M. Turkyilmazoglu, Exact solutions to heat transfer in straight fins of varying exponential shape having temperature dependent properties, Int J Therm Sci. 55 (2012) 69-75.
[25] H. Unal, An analytic study of boiling heat transfer from a fin, International Journal of Heat and Mass Transfer 30 (1987) 341-349.