بسط دادن یک روش پایدار برای محاسبه تابع ماتریس علامت و کاربرد آن برای معادلات جبری ریکاتی و سیلوستر
Subject Areas : International Journal of Industrial Mathematicsپرندوش عطایی دلشاد 1 , طاهر لطفی 2
1 - گروه ریاضی، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران.
2 - گروه ریاضی، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران.
Keywords: Kung-Traub method, Matrix sign function, Stable Sylvester equation., Algebraic Riccati equation,
Abstract :
[1] F. A. Aliev, V. B. Larin, Optimization of Linear Control Systems: Analytical Methods and Computational Algorithms, volume 8 of Stability and Control: Theory, Methods and Applications, Gordon and Breach, 1998.
[2] P. Ataei Delshad, T. Lotfi, On the local convergence of Kung-Traubs two-point method and its dynamics, Appl Math 65 (2020) 379-406. http://dx.doi.org/10. 21136/AM.2020.0322-18/
[3] R. H. Bartels, G. W. Stewart, Solution of the matrix equation AX + XB = C, Algorithm 432. Comm. ACM. 15 (1972) 820-826.
[4] P. Benner, E. S. Quintana-Ort´ı, G. Quintana-Ort´ı, Solving Stable Sylvester Equations via Rational Iterative Schemes,Journal of Scientific Computing 28 (2006) 51-83. http://dx.doi.org/10.1007/s10915-005-9007-2/
[5] P. Benner, Factorized Solution of Sylvester Equations with Applications in Control, In Proc. of the 16th International Symposium on Mathematical Theory of Network and Systems, 2004.
[6] A. Bunse-Gerstner, Computational solution of the algebraic Riccati equation, Journal of the Society of Instrument and Control Engineers (SICE) 38 (1996) 632-639.
[7] S. Barrachina, P. Benner, E. S. QuintanaOrt´ı, Efficient algorithms for generalized algebraic Bernoulli equations based on the matrix sign function,Numerical Algorithms 46 (2007) 351-368.
[8] A. Cayley, A memoir on the theory of matrices, Philos. Trans. Roy. Soc. London 148 (1858) 17-37.
[9] D. Calvetti, L. Reichel, Application of ADI iterative methods to the restoration of noisy images, SIAM J. Matrix Anal. Appl. 17 (1996) 165-186.
[10] A. Cordero, F. Soleymani, J. R.Torregrosa, M. ZakaUllah, Numerically stable improved Chebyshev-Halley type schemes for matrix sign function, Journal of Computational and Applied Mathematics 318 ( 2017) 189-198.
[11] J. P. Charlier, P. Van Dooren, A systolic algorithm for Riccati and Lyapunov equations, Math. Control Signals Systems 2 (1989) 109-136.
[12] L. Dieci, M. R. Osborne, R. D. Russell, A Riccati transformation method for solving linear bvps, I: Theoretical aspects, SIAM J. Numer. Anal. 25 (1988) 1055-1073.
[13] W. H. Enright, Improving the efficiency of matrix operations in the numerical solution of stiff ordinary differential equations, ACM Trans. Math. Softw. 4 (1987) 127-136.
[14] F. Filbir, Computation of the structured stability radius via matrix sign function, Systems and Control Letters 22 (1994) 341-349.
[15] G. H. Golub, S. Nash, C. F. Van Loan, A Hessenberg-Schur method for the problem AX+XB = C, IEEE Trans. Automat. Control AC. 24 (1979) 909-913.
[16] G. H. Golub, C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, third edition, 1996.
[17] M. Ghorbanzadeh, K. Mahdiani, F. Soleymani, T. Lotfi, A Class of Kung-Traub-Type Iterative Algorithms for Matrix Inversion, International Journal of Applied and Computational Mathematics 2 (2016) 641-648.
[18] J. D. Gardiner, A. J. Laub, Parallel algorithms for algebraic Riccati equations, Internat. J. Control 54 (1991) 1317-1333.
[19] J. D. Gardiner, A Stabilized matrix sign function algorithm for solving algebraic Riccati equations, SIAM J. SCI. COMPUT 18 (1997) 1393-1411.
[20] H. V. Henderson, S. R. Searle, On deriving the inverse of a sum of matrices, SIAM Rev. 23 (1981) 53-60.
[21] N. J. Higham, Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.
[22] D. Y. Hu, L. Reichel, Application of ADI iterative methods to the restoration of noisy images, Linear Algebra Appl. 172 (1992) 283-313.
[23] B. Iannazzo, Numerical solution of certain nonlinear matrix equations (Ph.D. thesis), Dipartimento di Matematica, Universit`a diPisa, 2007.
[24] B. Iannazzo, A family of rational iterations and its application to the computation of the matrix pth root, SIAM J. Matrix Anal. Appl. 30 (2008) 1445-1462.
[25] F. Khaksar Haghani, A generalized Steffensen’s method for matrix sign function, Applied Mathematics and Computation 260 (2015) 249-256.
[26] C. S. Kenney, A. J. Laub, On scaling Newton’s method for polar decomposition and the matrix sign function, SIAM J. Matrix Anal. Appl. 13 (1992) 688-706.
[27] C. S. Kenney, A. J. Laub, P. M. Papadopoulos, Matrix-sign algorithms for Riccati equations, IMA J. Math. Cont. Infor. 9 (1992) 331-344.
[28] H. T. Kung, J. F. Traub, Optimal order of one-point and multi-point iteration, J. ACM. 21 (1974) 643-651.
[29] N. Kyurkchiev, A. Iliev, A refinement of some overre-laxation algorithms for solving a system of linear equations, Serdica Journal of Computing 7 (2013) 245-256.
[30] T. Lotfi, S. Sharifi, M. Salimi, S. Siegmund, A new class of three-point methods with optimal convergence order eight and its dynamics, Numerical examples 68 (2015) 261-288.
[31] T. Lotfi, P. Bakhtiari, A. Cordero, K. Mahdiani, J. R. Torregrosa, Some new efficient multipoint iterative methods for solving nonlinear systems of equations, International Journal of Computer Mathematics 92 (2015) 1921-1934
[32] M. S. Misrikhanov, V. N. Ryabchenko, A matrix sign function in problems of the analysis and design of linear systems, Automation and Remote Control 69 (2008) 198-222.
[33] M. S. Petkovi´c, B. Neta, L. D. Petkovi´c, J. Dˇzuni´c, Multipoint Methods for Solving Nonlinear Equations, Elsevier, New York, 2013.
[34] J. D. Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign function,Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971.
[35] P. Pandey, C. Kenney, A. J. Laub, parallel algorithm for the matrix sign function, Internat. J. High Speed Computing 2 (1990) 181-191.
[36] A. R. Soheili, F. Toutounian, F. Soleymani, A fast convergent numerical method for matrix sign function with application in SDEs, Journal of Computational and Applied Mathematics 282 (2015) 167-178.
[37] J. J. Sylvester, Additions to the articles, "On a New Class of Theorems," and "On Pascal’s Theorem", Philosophical Magazine 37 (1850) 363-370.
[38] J. F. Steffensen, Remarks on iteration, Skandinavisk Aktuarietidskrift 16 (1933) 64-72.
[39] M. Trott, The Mathematica Guide book for Numerics, Springer, NewYork, NY, USA, 2006.
[40] E. L. Wachspress, Iterative solution of the Lyapunov matrix equation, Appl. Math. Letters 107 (1988) 87-90.