آنالیز کارایی هزینه و درآمد غیرمحدب در شبکه دو مرحله ای و کاربرد آن برای فرودگاههای ایران
Subject Areas : International Journal of Industrial Mathematicsجواد گرامی 1 , محمد رضا مظفری 2 , پریسا کامیاب 3
1 - گروه ریاضی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.
2 - گروه ریاضی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.
3 - گروه ریاضی، واحد علوم و تحقیقات گیلان، دانشگاه آزاد اسلامی، رشت، ایران.
Keywords: کارایی هزینه و درآمد, تحلیل پوششی داده ها, خطوط هوایی, FDH, شبکه دو مرحله ای,
Abstract :
در دنیای حقیقی ممکن است تصمیم گیرنده بخواهد کارایی هزینه و درآمد را برای واحدهای تصمیم گیرنده موجود در مقابل برای واحدهای تصمیم گیرنده مجازی انجام دهد در اینصورت دیگر نمی توان از مدلهای سنتی تحلیل پوششی داده ها استفاده نمود و باید از مدلهای FDH به منظور ارزیابی کارایی واحدهای تصمیم گیرنده استفاده نماییم. در این مقاله مدلهای ارزیابی کارایی درآمد و هزینه را بر اساس مدلهای FDH و مقایسات زوجی توسعه می دهیم. در ادامه مدلهای ارائه شده را برای شبکه دو مرحله ای توسعه میدهیم و مقادیر مطلوب ورودیها و خروجیها را با توجه به قیمت آنها بدست می آوریم. یک الگوریتم برای اندازه گیری کارایی هزینه و درآمد بر اساس نسبت ورودیها و خروجیها ارائه شده است. سرانجام الگوریتم ارائه شده را برای ارزیابی کارایی 13 فرودگاه با ساختار شبکه دو مرحله ای در ایران بدون در نظر گرفتن قید تحدب بکار می بریم. در انتها نتایج حاصل از تحقیق را ارائه میدهیم.
[1] C. P. Barros, Airports in Argentina: Technical efficiency in the context of an economic crisis, Journal of Air Transport Management 14 (2008b) 315-319.
[2] C. P. Barros, P. C. Dieke, Measuring the economic efficiency of airports: A simarWilson methodology analysis, Transportation Research Part E: Logistics and Transportation Review 44 (2008) 1039-1051.
[3] N. Bhanot, H. Singh, Benchmarking the performance indicators of Indian Railway container business using in data envelopment analysis, Benchmarking: An international journal 21 (2014) 101-120.
[4] L. Castelli, R. Pesenti, W. Ukovich, DEAlike models for efficiency evaluation of hierarchically structured DMUs, European Journal of Operational Research 154 (2004) 465-476.
[5] A. Charnes, W. W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research 2 (1978) 429-444.
[6] L. Deprins, H. Simar, S. Tulkens, Measuring labor efficiency in post offices. In: M. Marchland, P. Pestieau, H. Tulkens(Eds), the performance of public enterprise: concepts and measurement, North-Holland, Amesterdam (1984).
[7] M. Duygun, D. Prior, M. Shaban, E. Tortosa-ausina, Disentangling the European airlines efficiency puzzle: a network data envelopment analysis approach, Omega 60 (2016) 2-14.
[8] L. W. Fan, F. Wu, P. Zhou, Efficiency measurement of Chinese airports with flight delays by directional distance function, Journal of Air Transport Management 34 (2014) 140-145.
[9] R. Fare, S. Grosskoft, Productivity and intermediate products: a frontier approach, Economic letters 50 (1996) 65-70.
[10] R. Fare, S. Grosskopf, Network DEA, SocioEconomic Planning Sciences 34 (2000) 35-49.
[11] E. Fernandes, R. R. Pacheco, Efficient use of airport capacity, Transportation Research Part A: Policy and Practice 26 (2000) 225-238.
[12] D. Gillen, A. Lall, Non-parametric measures of efficiency of US airports, International Journal of Transport Economics 28 (1997) 283-306.
[13] S. Kaffash, M. Marra, Data envelopment analysis in financial services: a citations network analysis of banks, insurance companies and money market funds, Annals of Operations Research 6 (2016) 1-38.
[14] K. Kerstens, P. Vanden Eeckaut, Estimating returns to scale using nonparametric deterministic technologies: a new method based on goodness-of-fit, European Journal of Operational Research 113 (1999) 206-214.
[15] L.C. Lin, C.H. Hong, Operational Performance Evaluation of International Major Airports: An Application of Data Envelopment Analysis, Journal of Air Transport Management 12 (2006) 342-351.
[16] S. Lim, J. Zhu, A note on two-stage network DEA model: frontier projection and duality, European Journal of Operational Research 248 (2016) 342-346.
[17] D. Liu, Measuring aeronautical service efficiency and commercial service efficiency of East Asia airport companies: an application of Network Data Envelopment Analysis, Journal of Air Transport Management 52 (2016) 11-22.
[18] D. Liu, Evaluating the multi-period efficiency of East Asia airport companies, Journal of Air Transport Management 59 (2017) 71-82.
[19] S. Lozano, E. Gutierrez, P. Moreno, Network DEA approach to airports performance assessment considering undesirable outputs, Applied Mathematical Modeling 37 (2013) 1665-1676.
[20] M. Maghbouli, A. Amirteimoori, S. Kordrostami. Two-stage network structures with undesirable outputs: a DEA based approach, Measurement 48 (2014) 109-118.
[21] C. Manasakis, A. Apostolakis, G. Datseris, Using data envelopment analysis to measure hotel efficiency in Crete, International Journal of Contemporary Hospitality Management 25 (2013) 510-535.
[22] R. Masson, N. M. Jain, S. A. Ganesh, G. George, Operational efficiency and service delivery performance: a comparative analysis of Indian telecom service providers, Benchmarking: An international journal 23 (2016) 893-915.
[23] R. Merkert, L. Mangia, Explanatory power of different data envelopment analysis models for determining airports cost efficiency, Transportation Research Record, Journal of the Transportation Research Board 2336 (2013) 91-96.
[24] T.H. Oum, C. Yu, X. Fu, A comparative analysis of productivity performance of the words major airports: summary report of the ATRS global airport benchmarking research report-2002, Journal of Air Transport Management 9(5) (2003) 285-297.
[25] J. C. Paradi, H. Zhu, A survey on bank branch efficiency and performance research with data envelopment analysis, Omega 41 (2013) 61-79.
[26] R.R. Pacheco, E. Fernandes, M.P.S. Santos, Management style and airport performance in Brazil, Journal of Air Transport Management 12 (2006) 324-330.
[27] M. Seiford, L. Zhu, Profitability and marketability of the top 55 us commercial banks, Management science 45 (1999) 1270-1288.
[28] Y. Shao, C. Sun, Performance evaluation of Chinas air routes based on network data envelopment analysis approach, Journal of Air Transport Management 55 (2016) 16-24.
[29] S. Suzuki, P. Nijkamp, P. Rietveld, A stepwise efficiency improvement DEA model for airport operations with fixed production factors, Paper presented at the ERSA Congress (2011).
[30] K. Tone, M. Tsutsui, Network DEA: A slacks-based measure approach, European Journal of operational research 197 (2009) 243-252.
[31] H. Tulkens, On FDH efficiency analysis: some methodological issues and applications to retail, banking, courts and urban transit, Journal of productivity Analysis 4 (1993) 183-210.
[32] P. Wanke, Physical infrastructure and flight consolidation efficiency drivers in Brazilian airports: a two-stage network-DEA approach, Journal of Air Transport Management 31 (2013) 1-5.
[33] P. Wanke, C.P. Barros, Efficiency thresholds and cost structure in Senegal airports, Journal of Air Transport Management 58 (2017) 100-112.
[34] Y. Yoshida, H. Fujimoto, Japanese-airport benchmarking with DEA and endogenousweight TFP methods: testing the criticism of over investment in Japanese regional airports, Transportation Research Part E: Logistics and Transportation Review 40 (2004) 533-546.
[35] M. M. Yu, Hsu, C. C. Chang, D. H. Lee, Productivity growth of Taiwans major domestic airports in the presence of aircraft noise, Transportation Research Part E: Logistics and Transportation Review 44 (2008) 543-554.
[36] A.C. Yuen, A. Zhang, Effects of competition and policy changes on Chinese airport productivity: An empirical investigation, Journal of Air Transport Management 15 (2009) 166-174.