Discuss Optimal Portfolio Efficiency in terms of Kurtosis Model in Phase environment
Subject Areas : Journal of Investment KnowledgeEhsan Ghadrdan 1 , Khosro Faghani Makrani 2 , Samira Solgi 3
1 - Instructor of Accounting Payame Noor University, Iran.
2 - Assistant Prof. of Accounting, Islamic Azad University, Sari Branch, Iran.
3 - MSc. of Accounting, Islamic Azad University, Hamadan Branch, Iran. (Corresponding Author)
Keywords: Optimum Portfolio, Predicated Risk, Predicated Yield, Kurtosis Model, Classic Model,
Abstract :
The most important problem for investors, at the beginning stages of their works, is the way of assigning their investment to one or more different investment alternatives in such a way that with the least possible risk the maximum return become obtainable. In the economic literature this is known as the problem of portfolio selection. In present research, portfolio classic performance efficiency (Markowitz variance average model) was discussed in phase environment based on Kurtosis as target function. The research method Used in this study is post event semi empirical design. In this research, one discussed 195 monthly portfolios in 10 years (2007-2016) in companies accepted in Tehran stock exchange and risk and yield of portfolio was estimated in phase and classic environment. In another step, significant difference between risk and yield was predicated and the results showed that risk and yield have significant difference in phase environment based on kurtosis model.
* بهزادی، عادل و بختیاری، مصطفی(1393). ارائه مدلی برمبنای میانگین- آنتروپی- چولگی برای بهینه سازی سبد سهام در محیط فازی. مجله مهندسی مالی و مدیریت اوراق بهادار، دوره پنجم، شماره 19، صص 39-55.
* رستمی، محمدرضا، کلانتری بنجار، محمود و بهزادی، عادل(1394). گشتاورهای مراتب بالاتر در بهینه سازی سبد سهام در محیط فازی. مجله مهندسی مالی و مدیریت اوراق بهادار، شماره24، صص 41-61.
* شاه محمدی، محسن، امامی میبدی، لیلی و زارع مهرجردی، یحیی(1391). ارائه الگوریتم هوشمند ترکیبی بر پایه مدل فازی میانگین واریانس-چولگی برای انتخاب پرتفوی، مجله مهندسی صنایع و مدیریت تولید، شماره چهارم، دوره 23، صص 448-458.
* -شیری قهی، امیر، دیده خانی، حسین، خلیلی دامغانی، کاوه و سعیدی، پرویز(1396). مطالعه تطبیقی مدل بهینه سازی پرتفوی چند دورهای چند هدفه در محیط اعتبار فازی با معیارهای متفاوت ریسک. مجله راهبرد مدیریت مالی، سال پنجم، شماره 18، صص 1-26.
* Aracioglu, B., Demircan, F., & Soyuer, H. (2011). Mean–Variance – Skewness–Kurtosis Approach to Portfolio Optimization: An Application in İstanbul Stock Exchange. 11, 9-17.
* Arenas, M., Bilbao, A., Rodriguez, M. (2001). A Fuzzy Goal Programming Approach to Portfolio Selection. European Journal of Operational Research, 133, 287-297.
* Bhattacharyya, R., Hossain, S.A., & Kar, S. (2014) Fuzzy cross-entropy, mean, variance, skewness models for portfolio selection. Journal of King Saud University – Computer and Information Sciences, 26, 79–87.
* Bhattacharyya, R., Kar, M. B., Kar, S., & Majumder, D. D. (2009). Mean-entropy-skewness fuzzy portfolio selection by credibility theory approach. in Pattern Recognition and Machine Intelligence, 603-608.
* Carlsson, R., Fullér, R., & Majlender, P. (2002). A possibilistic approach to selecting portfolios with highest utility score. Fuzzy sets and systems, 131, 13-21.
* Dubois, D., Prade, H. M., Farreny, H., Martin-Clouaire, R., & Testemale, C. (1998). Possibility theory: an approach to computerized processing of uncertainty. vol. 2: Plenum press New York.
* Fabozzi, F.J., Kolm, P.N., Pachamanova, D., & Focardi, S.M. (2007). Robust Portfolio Optimization and Management. Hoboken, NJ: John Wiley & Sons.
* Field, B., Beardsley, X.W., & Xiao, M. (2012). Mean-Variance-Skewness-Kurtosis Portfolio Optimization with Return and Liquidity. Communications in Mathematical Finance, 1(1), 13-49
* Johnson, M. D., Gustafsson, A., Andreassen, T. W., Lervik, L., & Cha, J. (2001). The evolution and future of national customer satisfaction index models. Journal of economic Psychology, 22(2), 217-245.
* Kima, W.C., Fabozzi, F.J., Cheridito, P., & Fox, C. (2014). Controlling portfolio skewness and kurtosis without directly optimizing third and fourth moments. Economics Letters. 122.154–158.
* Konno, H., & Yamazaki, H. (1991). Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management science, 37, 519-531.
* Konno, H., Shirakawa, H., & Yamazaki, H. (1993). A mean-absolute deviation-skewness portfolio optimization model. Annals of Operations Research, 45, 205-220.
* Konno, H., Suzuki, K. (1995). A Mean-Variance-Skew ness Optimization Model. Journal of the Operations Research of Japan, 38, 87-137.
* Li, X., Zhang, Y., Wong, H.S., Qin, Z. (2009). A Hybrid Intelligent Algorithm for Portfolio Selection Problem with Fuzzy Returns. Journal of Computational and Applied Mathematics, 233, 264-278.
* Liu, B., & Liu, Y.-K. (2002). Expected value of fuzzy variable and fuzzy expected value models. Fuzzy Systems, IEEE Transactions on, 10, 445-450.
* Liu, S.C., Wang, S.Y., Qiu, W.H.. (2003). A Mean–Variance–Skewness Model for Portfolio Selection with Transaction Costs. International Journal of Systems Sciences, 34 (4), 62-255.
* Lotfizadeh, A. (1965). Fuzzy sets. Information and control, 8, 338-353.
* Lotfizadeh, A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 100, 9-34.
* Mao, J.C.T. (1970). Models of Capital Budgeting, E-V vs. E-S. Journal of Financial and Quantitative Analysis, 5, 57-75.
* Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1), 77-91.
* Markowitz, H. (1959). Portfolio selection: efficient diversification of investments. Yale university press.
* Markowitz, H.M. (1959) Portfolio Selection: Efficient Diversification of Investments. John Wiley & Sons, New York.
* Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of risk, 2, 21-42.
_||_