Optimization of the parameters affecting the removal of Acid Orange 7 using magnetite nanoparticles via response surface modeling method and Minitab 16 software
Subject Areas : Water and EnvironmentEzatolah Mozafari 1 , Amin Saki 2 , Aref Faghihi 3 , Siavash Fathinia 4
1 - Assistant Professor of Mine Engineering, Imam Khomeini International University, Qazvin, Iran.
2 - I- MSc of Mineral Processing Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran.* (Corresponding Author)
3 - PhD of Mineral Processing Engineering, Faculty of Engineering, Islamic Azad University South Tehran, Tehran, Iran
4 - MSc of Mineral Processing Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran.
Keywords: Heterogeneous Fenton, magnetite nanoparticles, Planetary ball mill, iron ore, Acid Orange7,
Abstract :
Background and Objective: Textile and dyeing industry are the largest consumers of drinking water. Therefore, colored wastewaters that generated by the textile and dyeing industry, if discharged into the environment without treatment, can adversely affect aquatic ecosystems. In this study, magnetite nanoparticles are used to remove the dye (Acid Orange 7) from aqueous solution. Method: The magnetite nanoparticles were produced by a mechanical method using a planetary ball milling, and then the related physical properties were obtained and the chemical analysis was done by XRF, XRD and SEM images. The Heterogeneous Fenton process optimization was performance by response surface modeling with the help of Minitab16 software. The parameters of the initial concentration of the dye (5, 10, 15, 20 and 25 mg/L), the initial concentration of catalyst (0.4, 0.5, 0.6, 0.7 and 0.8 g/L), the initial concentration of hydrogen peroxide (5, 6.75, 8.50, 10.25, 12 mmol/L) and time of the process (8, 10, 24, 32 and 40 minutes) were selected as the factors involved in response surface modeling procedure. Findings: Dimensions of magnetite nanoparticles were determined as less than 50 nm. The amounts of magnetite (Fe3O4) and hematite (Fe2O3) were measured to be 21/68 and 31/22 respectively. Conditions for the initial concentration of the dye (X1), the initial concentration of catalyst (X2), the initial concentration of hydrogen peroxide (X3) and the process time (X4) were obtained as 10 mg / L, 0.7 g / L, 10.25mmol / L, 32 min respectively. ANOVA high correlation coefficients for the proposed model was also obtained (adjusted-R2=0.945 and R2=0.897). Conclusion: In optimal conditions, the removal efficiency of the dye (Acid Orange 7) by magnetite nanoparticles is 100%.
1- Kusic, H., Koprivanac, N., and Selanec, I., 2006. Fe-exchanged zeolite as the effective heterogeneous Fenton-type catalyst for the organic pollutant minimization: UV irradiation assistance. ChemosPHere, Vol. 65, pp. 65-73.
2- Brillas, E., Calpe, J.C., and Casado, J., 2000. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water research, Vol. 34, pp. 2253-2262.
3- Chen, Y., Li, N., Zhang, Y., and Zhang, L., 2014. Novel low-cost Fenton-like layered Fe-titanate catalyst: Preparation, characterization and application for degradation of organic colorants. Journal of Colloid and Interface Science, Vol. 422, pp. 9-15.
4- Chen, K.-C., Wu, J.-Y., Liou, D.-J., and Hwang, S.-C.J., 2003. Decolorization of the textile dyes by newly isolated bacterial strains. Journal of Biotechnology, Vol. 101, pp. 57-68.
5- Chen, A., Ma, X., and Sun, H., 2008. Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites, Journal of Hazardous Materials, Vol. 156, pp. 568-575.
6- Fathima, N.N., Aravindhan, R. Rao, J.R., and Nair, B.U., 2008. Dye house wastewater treatment through advanced oxidation process using Cu-exchanged Y zeolite: A heterogeneous catalytic approach. ChemosPHere, Vol. 70, pp. 1146-1151.
7- Glaze WH, Bose P, and DS, M., 1998. Degradation of RDX by various advanced oxidation processes: I. Reaction rates. Water Research, Vol. 32, pp. 997-1004.
8- Khataee, A.R., Safarpour, M., Naseri, A., and Zarei, M., 2012. PHotoelectro-Fenton/nanoPHotocatalysis decolorization of three textile dyes mixture: Response surface modeling and multivariate calibration procedure for simultaneous determination. Journal of Electroanalytical Chemistry, Vol. 672, pp. 53-62.
9- Khataee, A.R., Vatanpour, V., and Amani Ghadim, A.R., 2008. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study. Journal of Hazardous Materials, Vol. 161, pp. 1225-1233.
10- بزرگ اسفنگره، صغری. «بررسی کارایی فرآیند فنتون هتروژن با استفاده از نانو ذرات زئولیت فرآوری شده توسط پلاسما و اصلاح شده با یونهای آهن جهت تصفیهی آبهای آلوده به مواد رنگزای آلی» ، پایان نامه کارشناسی ارشد شیمی کاربردی، دانشگاه تبریز، دانشکده شیمی، 1392؛ صفحات 8تا17 و 32تا41.
11- Neyens, E. and Baeyens, J., 2003. A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, Vol. 98, pp. 33-50.
12- فتحینیا، سیاوش، 1393، تولید مکانیکی نانو ذرات پیریت و بررسی کاربرد آنها در فرآیند فنتون هتروژن جهت تصفیهی آبهای آلوده به مواد رنگزای آلی، پایان نامه کارشناسی ارشد فرآوری مواد معدنی، دانشگاه بینالمللی امام خمینی (ره)، دانشکده فنی و مهندسی، 11تا16.
13- Bayat, M. Sohrabi, M. Royaee, S. J., 2012. Degradation of PHenol by heterogeneous Fenton reaction using Fe/clinoptilolite. Journal of Industrial and Engineering Chemistry, Vol. 18, pp. 957-62.
14- Tekbas, M. Yatmaz, H.C. Bektas, N., 2009. Heterogeneous PHoto-Fenton oxidation of reactive azo dye solution using iron exchanged zeolite as a catalyst, Micropor. Mesopor. Mat, Vol. 115, pp. 594-602.
15- Araujo, F. Yokoyama, F.V. Teixeira L., 2011. Heterogeneous fenton process using the mineral hematite for the discolouration of a reactive dye solution. Brazilian Journal of Chemical Engineering, Vol. 74, pp. 897-902.
_||_