Production of mesoporous activated carbon from cone of Iranian pine tree (Pinus eldarica) using chemical activation for adsorption of sodium dodecylbenzene sulfonate from aqueous solution .
Subject Areas : environmental managementSoheil Valizadeh 1 , Habibollah Younessi 2 , Nader Bahramifar 3
1 - Msc Graduated of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University.
2 - Proffesor of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University. * (Corresponding Author)
3 - - Assistance Proffesor of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University.
Keywords: Activated Carbon, Pyrolysis, Sodium Dodecylbenzene Sulfonat, Kinetics, Batch Adsorption,
Abstract :
Background and Objective: Recently pollution due to sewage containing surfactants has become a major cause of environmental pollution. Sodium dodecyl benzene sulfonate (SDBS) is one of the most important types of surfactants. The purpose of this study was to synthesize activated carbon (AC) from Iranian pine cones (Pinus eldarica) for the removal of sodium dodecylbenzene sulfonate (SDBS) from aqueous solution in batch systems. Method: The activated carbon samples were prepared using three activation agents including phosphoric acid, potassium carbonate and potassium hydroxide with different impregnation ratios. Pyrolysis process was performed in a ceramic furnace under a nitrogen gas flow rate of 100 ml/min with a heating rate of 8°C/min for 3 hours in 750 °C. Maximum surface area was obtained using synthesized activated carbon with H3PO4 in impregnation of 2:1 with 1580 m2/g. The synthesized activated carbon with three activating agents was used in the batch system to remove the SDBS from aqueous solution. Findings: The results showed that activated carbon produced by potassium carbonate with impregnation ratio of 0.75:1 has the highest absorption capacity of 97.56 mg/g. The experimental kinetic data were analyzed by pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. The result indicated that pseudo-second-order with R2>0.982 provided a better description of adsorption data. Desorption experiments were carried out using different compounds. Sulfuric acid and ethanol showed the highest desorption rates of 65/67 and 40/03%, respectively.
1- Taffarel, S.R., Rubio, J. 2010. Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural
zeolite with CTAB. Minerals Engineering, 23(10), 771-779.
2- Wijanarko, A., Wulan, P. D. K. P., Chandra, W., Dianursanti, D., Song, S. K., Sudibandriyo, M., & Gozan, M. (2006). Adsorption of alkyl benzene sulfonate surfactant on activated carbon for biobarrier purpose.
3- Eichhorn, P., Rodrigues, S. V., Baumann, W., & Knepper, T. P. (2002). Incomplete degradation of linear alkylbenzene sulfonate surfactants in Brazilian surface waters and pursuit of their polar metabolites in drinking waters. Science of the total environment, 284, 123-134.
4- Fu, E., Somasundaran, P., & Maltesh, C. (1996). Hydrocarbon and alcohol effects on sulfonate adsorption on alumina. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 112, 55-62.
5- Gurses, A., Yalcin, M., Sozbilir, M., & Dogar, C. (2003). The investigation of adsorption thermodynamics and mechanism of a cationic surfactant, CTAB, onto powdered active carbon. Fuel processing technology, 81, 57-66.
6- Gurses, A., Yalcin, M., Sozbilir, M., & Dogar, C. (2003). The investigation of adsorption thermodynamics and mechanism of a cationic surfactant, CTAB, onto powdered active carbon. Fuel processing technology, 81, 57-66.
7- Chen, X., Jeyaseelan, S., & Graham, N. (2002). Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Management, 22, 755-760.
8- Timur, S., Kantarli, I. C., Onenc, S., & Yanik, J. (2010). Characterization and application of activated carbon produced from oak cups pulp. Journal of Analytical and Applied Pyrolysis, 89, 129-136.
9- Nahil, M. A., & Williams, P. T. (2012). Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks. Biomass and Bioenergy, 37, 142-149.
10- Beltrán-Heredia, J., Sánchez-Martín, J., & Solera-Hernández, C. (2009). Removal of sodium dodecyl benzene sulfonate from water by means of a new tannin-based coagulant: optimisation studies through design of experiments. Chemical Engineering Journal, 153, 56-61.
11- Yang, K., Zhu, L., & Xing, B. (2007). Sorption of sodium dodecylbenzene sulfonate by montmorillonite. Environmental Pollution, 145, 571-576.
12- Özdemir, U., Özbay, B., Veli, S., & Zor, S. (2011). Modeling adsorption of sodium dodecyl benzene sulfonate (SDBS) onto polyaniline (PANI) by using multi linear regression and artificial neural networks. Chemical Engineering Journal, 178, 183-190.
13- Zhang, Z., Deng, Y., Shen, M., Han, W., Chen, Z., Xu, D., Ji, X., (2009). Investigation on rapid degradation of sodium dodecyl benzene sulfonate (SDBS) under microwave irradiation in the presence of modified activated carbon powder with ferreous sulfate. Desalination 249, 1022-1029.
14- Zhang, C., Valsaraj, K.T., Constant, W.D., Roy, D., (1999). Aerobic biodegradation kinetics of four anionic and nonionic surfactants at sub-and supra-critical micelle concentrations (CMCs). Water research 33, 115-124.
15- Lagergren, S., (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24, 1-39..
16- Vadivelan, V., & Kumar, K. V. (2005). Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of colloid and interface science, 286, 90-100.
17- Weber, W., & Morris, J. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng, 89, 31-60.
18- .Mohamed, A. R., Mohammadi, M., & Darzi, G. N. (2010). Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renewable and Sustainable Energy Reviews, 14, 1591-1599.
19- Heidari, A., Younesi, H., Rashidi, A., & Ghoreyshi, A. (2013). Journal of the Taiwan Institute of Chemical Engineers, 10, 1870-1878.
20- Moreno-Castilla C, Carrasco-Marı́n F, Lopez-Ramon M, Alvarez-Merino MA. (2001). Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon 2001; 39:1415.
21- Uysal, T., Duman, G., Onal, Y., Yasa, I., & Yanik, J. (2014). Production of activated carbon and fungicidal oil from peach stone by two-stage process. Journal of Analytical and Applied Pyrolysis. 108, 47-55.
22- Olivares-Marín, M., Fernández-González, C., Macías-García, A., & Gómez-Serrano, V. (2006). Preparation of activated carbon from cherry stones by chemical activation with ZnCl2. Applied Surface Science, 252, 5967-5971.
23- Carvalho, A., Gomes, M., Mestre, A., Pires, J., & Brotas de Carvalho, M. (2004). Activated carbons from cork waste by chemical activation with K2CO3: Application to adsorption of natural gas components. Carbon, 42, 672-674.
24- Adinata, D., Wan Daud, W. M. A., & Aroua, M. K. (2007). Production of carbon molecular sieves from palm shell based activated carbon by pore sizes modification with benzene for methane selective separation. Fuel processing technology, 88, 599-605.
25- Mishra, S., & Kanungo, S. (2003). Adsorption of sodium dodecyl benzenesulfonate onto coal. Journal of colloid and interface science, 267, 42-48.
26- Bautista-Toledo, M., Méndez-Díaz, J., Sánchez-Polo, M., Rivera-Utrilla, J., & Ferro-García, M. (2008). Adsorption of sodium dodecylbenzenesulfonate on activated carbons: effects of solution chemistry and presence of bacteria. Journal of colloid and interface science, 317, 11-17
27- Bautista-Toledo, M. I., Rivera-Utrilla, J., Méndez-Díaz, J. D., Sánchez-Polo, M., & Carrasco-Marín, F. (2014). Removal of the surfactant sodium dodecyl benzene sulfonate from water by processes based on adsorption/ bioadsorption and biodegradation. Journal of colloid and interface science, 418, 113-119.
28- Ho, Y.-S., & McKay, G. (2003). Sorption of dyes and copper ions onto biosorbents. Process Biochemistry, 38, 1047-1061.
29- Mi-Na, Z., Xue-Pin, L., & Bi, S. (2006). Adsorption of surfactants on chromium leather waste. Journal-society of leather technologists and chemists, 90, 1.