Efficiency of Multi-Walled Carbon Nanotubes in TPH Adsorption in Aqueous Solution (Case study: Naphthalene)
Subject Areas :
environmental management
sahere fazlollahi
1
,
Amir Hesam Hassani
2
,
Mehdi Borghei
3
,
Hamidreza Pourzamani
4
1 - MSc. Student at Department of Environmental Engineering (Water and Wastewater), Science and Research Branch, Islamic Azad University, Tehran, Iran. * (Corresponding Author)
2 - Associate Professor, Department of Environmental Engineering, (Water and Wastewater), Science and Research Branch, Islamic Azad University Tehran, Iran.
3 - Professor, Department of Oil Chemistry Engineering, Sharif University, Tehran, Iran.
4 - Assistant Professor, Department Environmental Health Engineering, Esfahan University of Medical Sciences, Esfahan, Iran.
Received: 2014-12-22
Accepted : 2015-08-08
Published : 2017-09-23
Keywords:
Multi-Walled Carbon Nanotubes,
Petroleum Hydrocarbons,
Polycyclic aromatic hydrocarbo,
Naphthalene,
Abstract :
Abstract
Background and Objective: Oil pollution is a type of organic water pollution. The hydrocarbons constitute most of the petroleum composition. Most of the early aromatic hydrocarbons are naphthalene with two benzene ring which cause anemia and damage the retina. It is also toxic to plants and aquatic environment. The removal of this compound from water by multi-walled carbon nanotubes is reviewed in this study.
Method: This experimental study was done in a batch system to investigate the effects of variations factors such as contact time, naphthalene concentration and dose of nanotubes on removal of naphthalene. In this study, naphthalene concentration was determined during various steps using UV-vis spectrophotometer at 254 nm.
Findings: Maximum surface adsorption of naphthalene onto multi-walledcarbon nanotubes was 33.3 mg/gr and the maximum adsorption occurred at acidic pH (pH =3). And the appropriate time for reaching the maximum adsorption rate of naphthalene and equalization state was 90 min. By increasing the adsorbent dose from 0.2 to 0.3 gr / l, removal efficiency of naphthalene solution with 10 mg/l initial concentration increased from 97% to 99.99%. By increasing naphthalene initial concentration from 3 to 10 mg/l, the removal efficiency increased from 73.33% to 99.99 % at pH=3 after 90 min. Adsorption mechanism followed pseudo first-order kinetics (R2=0.96).
Discussion and Conclusion: This adsorbent could be effective for removal of naphtalene due to its small size, large surface area , crystal shape and exclusive network arrangement and consequently very high reactivity and noticeable performance of multi-walled carbon nanotubes as adsorbent in removal of organic pollutants from aqueous solution.
References:
Rahimpour A, Rajaeian B, Hosienzadeh A, Madaeni SS,Ghoreishi F. Treatment of oily wastewater produced by washing of gasoline reserving tanks using self-made and commercial nanofiltration membranes. Desalination. 2011; 265(1-3):190-8.
American Petroleum Institute Administration. Proceedings of joint conference on prevention and control of oil spills. Sheraton Park Hotel:Washington DC; 2006 June.68
طلائی.امیررضا و همکاران، 1389،تجزیه ی ترکیبات آروماتیک موجود در نفت خام توسط میکروارگانیزم های جداشده از محیط، مجله علمی پژوهشی دانشگاه علوم پزشکی زنجان دوره18، شماره70، ص80-68 .
دیق بیان.خسرو، 1389، بررسی قابلیت تجزیه بیولوژیکی نفتالین با استفاده از باکتری های خاک زی پالایشگاه نفت تبریز، مجله علمی-پژوهشی زیست فناوری میکروب دانشگاه آزاداسلامی ،دوره دوم،شماره چهارم،صص 20-13.
Jafapour M. Evaluation of bioreactor and advanced -oxidation process for wastewater treatment, Proceedings of Seminar of Environmental Engineering; 2006; Tarbiat Modares University, Tehran (in Persian).
کریمی، بهروز،1392، بررسی فرآیند اکسیداسیون پیشرفته UV/H2O2 درحذف نفتالین از محیط آب، .مجله علمی پژوهشی دانشگاه علوم پزشکی اراک، سال 16 ،شماره 9 ( شماره پیاپی 78 )، ص 64-50.
Sadani M, Movahedian-Atar H, Faraji M, Jaberean B, Abouee E. 2011. Survey of crude oil toxicity component removal by adsorbtion with powdered activated carbon. J Shahrekord Univ Med Sci.; 13 (5): 45-54
Priya SS, Premalatha M, Anantharaman N. 2008 Solar photocatalytic treatment of phenolic wastewater: Potential, challenges and opportunities. J Engin App Sci.; 3(6):36-41.
Gotavac S, Song L, Kanoh H, Kaneko K. 2006. Assambly structure control of single wall carbon nanotubes with liquid phase naphthalene adsorption. Colloids andSurface A.; 300:117-211.
احرام پوش وهمکاران، 1391،.بررسی کارایی نانولوله های کربنی چند جداره اصلاح شده با هیپوکلریت کلسیم در حذف بنزن از محلول های آبی، مجله تحقیقات نظام سلامت ، سال هشتم، شماره ششم، ص1067-1058
محوی، امیر حسین،1390.بررسی حذف جیوه غیر آلی توسط نانولوله های کربنی چند دیواره و تک دیواره، دانشگاه علوم پزشکی تهران.
Xu, D.,Tan,x., chen, ch., wang, x.,(2008).Removal of pb(11) from arueouse solution by oxidized multiwalled carbon nanoyubes.journal of Hazardous Materials,154:407-416.
Lu, C., and Su, F. (2007). “Adsorption of natural organic matter by carbon nanotubes.” J. of Separation and Purification Technology, 58(1), 113-121.
Stafiej, A., and Pyrzynska, K. (2007). “Adsorption of heavy metal ions with carbon nanotubes.” Separation and Purification Technology, 58, 49-52.
Stafiej, A., and Pyrzynska, K. (2008). “Extraction of metal ions using carbon nanotubes.” Microchemical Journal, 89, 29-33.
Li, Y. H., Zhao, Y. M., Hu, W. B., Ahmad, I., Zhu, Y. Q., Peng, X. J., and Luan, Z. K. (2007 ) . “Carbon nanotubes-the promising adsorbent in wastewater treatment.” J. of Physics: Conference Series, 61
Kandaha, M.I., and Meunier, J.L. (2006). “Removal of nickel ions from water by multi-walled carbon nanotubes.” J. of Hazardous Materials, 145 (2-1), 283-288.
Kandaha, M.I., and Meunier, J.-L. (2007). “Removal of nickel ions from water by multi-walled carbon nanotubes.” J. of Hazardous Materials, 12(2-1), 283-288
Murr L. E. , Garza K. M. , Soto K. F. , Carrasco A. , Powell T. G. , Ramirez D. A. , Guerrero P. A. , Lopez D. A. , Venzor J.)2005) Cytotoxicity Assessment of Some Carbon Nanotubes and Related Carbon Nanoparticle Aggregates and the Implications for Anthropogenic Carbon Nanotube Aggregates in the Environment. Int. J. Environ. Res. Public Health: 1.31-42
Y. Wong, Y. Szeto, W. Cheung, G. McKay. (2004) Adsorption of acid dyes on chitosan equilibrium isotherm analyses. Process Biochem39.: 693-702.
B. Karagozoglu, M. Tasdemir, E. Demirbas, M. Kobya. .2007.The adsorption of basic dye (Astrazon Lue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: Kinetic and equilibrium studies. J. Hazard. Mater. 147. 297–306
Chen G-C, Shan X-Q, Wang Y-S, Wen B, Pei Z-G, Xie Y-N, et al. 2009; Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II). Water Research. 43(9): 18.24
Yin CY, Aroua M, Daud W. 2007. .Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Separation and Purification Technology; 52: -15.40
Rao GP, Lu C, Su F. 2007; Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purification Technology ,58:224-231
Lin, S.H., and Huang, C.Y. (1999). “Adsorption of BTEX from aqueous solution by macroreticular resins.” J. of Hazardous Materials, 70(1-2), 21-37.
Daifullah, A.A.M., and Girgis, B.S. (2003). “Impact of surface characteristics of activated carbon on adsorption of BTEX.” J. of Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214(1-3), 181-193.
Carmody, O., Frost, R., Xi, Y., and Kokot, S. (2007). “Adsorption of hydrocarbons on organo-clays-- implications for oil spill remediation.” J. of Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214(1-3), 181-193
Aivalioti, M., Vamvasakis, I., and Gidarakos, E. (2010). “BTEX and MTBE adsorption onto raw and thermally modified diatomite.” J. of Hazardous Materials, 178(1-3), 136-143.
_||_