Evaluation of the Efficiency of Catalytic Ozonation Process with magnesium-aluminum double layer hydroxide nanocomposite doped on zeolite in mineralization of cefixime antibiotic in Aqueous Solution
Subject Areas :
Environment Pullotion (water and wastewater)
yalda sheikh
1
,
elham Tazikeh-Lemeski
2
,
yousef Dadban Shahamat
3
1 - PhD Candidate, Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran.
2 - Associate Professor, Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran. *(Corresponding author)
3 - Associate Professor, Environmental Health Research Center, Faculty of Public Health, Golestan University of Medical Sciences, Gorgan, Iran.
Received: 2022-06-27
Accepted : 2023-04-26
Published : 2023-05-22
Keywords:
Cefixime antibiotic,
MgAl-LDH/Zeolite nanocomposite,
Response Surface Methodology,
Catalytic ozonation,
Abstract :
Background and Objective: One of the problems in the health systems of the world today is the prescription or overuse of drugs. Among these, antibiotics are of particular importance. Antibiotics are a group of drugs that are widely used in medicine and veterinary medicine. Cefixime (CFX) is also one of these antibiotics. The aim of this study was to investigate the removal efficiency of cefixime from synthetic sample using catalytic ozonation with Mg-Al layered double hydroxides Doped with zeolite.
Material and Methodology: In this experimental and laboratory study MgAl-LDH/Zeolite nanocomposite was used in laboratory reactor and ozonation to remove cefixime. Effect of pH variables (5,6,7,8,9), amount of nanocomposite (0.5,1,1.5,2,2.5 g/L), initial concentration of cefixime (5,10,15,20,25 mg/L) and reaction time (5,18.75,32.5,46.25,60 min) were examined to find the maximum mineralization efficiency and response surface methodology based on central composite design (CCD) was used to design experiments, analyze data and achieve optimal conditions. Analysis of variance was also used to analyze the date. This research was done in 2021-2022.
Findings: The maximum mineralization efficiency of cefixime under optimal conditions (pH=8.70, nanocomposite value=1.76 g/L, initial concentration of cefixime=24.06 mg/L, contact time=40.76 min) is 78%, which increases the target efficiency with increasing pH and contact time.
Discussion and Conclusion: Catalytic ozonation process with Mg-Al layered double hydroxides nanocomposite Doped with zeolite can be used effectively and efficiency to remove cefixime in aqueous media.
References:
Githinji, LJ., Musey, MK., Ankumah, RO., 2011. Evaluation of the fate of ciprofloxacin and amoxicillin in domesticWater,Air,&SoilPollution,Vol.219,pp.191-201.
Shemer, H., Kunukcu, YK., Linden, KG., 2006. Degradation of the pharmaceutical metronidazolevia UV, Fenton andphoto-Fenton processes. Chemosphere, Vol.63, pp. 269-276
Mackuľak, T., Mosný, M., Grabic, R., Golovko, O., Koba, O., Birošová, L., 2015. Fenton-like reaction: a possible way to efficiently remove illicit drugs and pharmaceuticals from wastewater. Environ Toxicol Pharmacol, Vol.39, pp. 483-488.
Asadi, Z., Ahmadi, S., 2019. Investigation of the efficiency of coagulation process for ciprofloxacin antibiotic removal from aqueous solution. J Health Res Community, Vol. 5, pp.38-48.
Nasseh, N., Barikbin, B., Nasseri, M.A., 2016. Antibiotics Pollution Damaging Effects on Environment and Review of Efficiency of Different Methods for Removing them. Nurse and Physician within War,Vol.4, pp.50-62. (In Persian)
Mostafaloo, R., Mahmoudian, MH., Asadi-Ghallhari, , 2019. BiFeO-3/Magnetic nanocomposites for thephotocatalytic degradation of cefixime from aqueoussolutions under visible light. Photochem PhotobiolA Chem, Vol. 382, pp.111926.
Khan, MN., Qayum, A., Rehman, UU., Guulab, H., Idrees, , 2015. Spectrophotometric method for quantitativedetermination of cefixime in buik and pharmaceuticalpreparation using ferroin complex. Appl Spectrosc, Vol.82,pp.705-711.
Maheshwari, M., Memon, A., Memon, S., Mughal,, Dayo, A., Memon, N., 2015. Optimization ofHPLC method for determination of cefixime using2-thiophenecarboxaldehyde as derivatizing reagent. Saudi Pharm,Vol. 23,pp.444-452.
Kemper, N., 2008. Veterinary antibiotics in the aquatic andterrestrial environment. Ecol Indicat, Vol.8,1-13.
Radjenović, J., 2008. Rejection of pHarmaceuticals innanofiltration and reverse osmosis membranedrinking water treatment. Water Research, Vol. 45,pp. 3601-3610
Belghadr, I., Shams Khorramabadi, G., Godinib, H.,Almasian, M., 2014. The removal of the cefixime antibioticfrom aqueous solution using an advanced oxidationprocess (UV/H2O2). Desalinat Water Treat,55,pp.1068-1075.
Li, D., Guo, X., Song, H., 2018. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemicaldegradation of ceftriaxone sodium. Hazard Mater, Vol.351,pp. 250-259.
Onyango, MS., Kojima, Y., Aoyi, O., 2004. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. ColloidInterfSci, Vol.279,pp.341-350.
Oller, I., Malato, S., Sánchez-Pérez, J., 2011. Combination ofadvanced oxidation processes and biological treatmentsforwastewaterdecontamination a review. Sci TotalEnviron, Vol.409,pp.4141-4166.
Mohamadiyan, J., Shams Khoramabadi, G., Mussavi, S.A., Kamarehie, B., Dadban Shahamat, Y., Godini, H., 2017. Aniline Degradation Using Advanced Oxidation Process by UV/Peroxy Disulfate from Aqueous Solution. International Journal of Engineering,Vol. 30,pp.684-690
Harrelkas, F., Paulo, A., Alves, MM., El Khadir, L., Zahraa, O.,Pons, MN., 2008. Photocatalytic and combined anaerobic–photocatalytictreatment of textile dyes. Chemosphere, Vol.72,1816-1822.
Moussavi, G., Khosravi, R., Omran, NR., 2012. Development of anefficient catalyst from magnetite ore: characterization andcatalytic potential in the ozonation of water toxic ApplCatalA,Vol.445,pp.42-49.
Kermani, M., Bahrami Asl, F., Farzadkia, M., Esrafili, A.,Salahshour Arian, S., Khazaei, M., 2015. Heterogeneouscatalytic ozonation by Nano-MgO is better than soleozonation for metronidazole degradation, toxicityreduction, and biodegradabilityimprovement.DesalinationWaterTreat, Vol. 57,pp. 1-10.
Nawrocki, J., Kasprzyk-Hordern, B., 2010. The efficiency andmechanisms of catalytic ozonation. ApplCatalBEnviron,99,pp.27-42.
Kermani, M., Farzadkia, M., Esrafili, A., Fallah Jokandan, S.,Yeganeh Badi, M., 2016. Removal of catechol from aqueoussolutions using catalytic ozonation by magneticnanoparticles of iron oxide doped with silica and titaniumdioxide: a kinetic study. Mazandaran U Med Sci,26,pp.139-154. (In Persian)
Tao, Q., Reddy, B.J., He, H., Frost, R.L., Yuan, P., Zhu, J., 2008. Synthesis and infrared spectroscopiccharacterization of selected layered doublehydroxides containing divalent Ni and Co.Materials Chemistry andPhysics,Vol.112,869-875.
Lv, L., He, J., Wei, M., Evans, D., Duan, X., 2006. Factors influencing the removal of fluoride fromaqueous solution by calcined Mg–Al–CO3layered double hydroxides. Journal ofHazardous Materials,Vol 133, pp. 119-128.
Wang, C., Shi, H., Li, Y.,2012. Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts. Applied Surface Science, 258, pp.4328-4333.
Malakootian, M., Dadban shahamat, Y., Mahdizadeh, H. 2020. Purification of diazinon pesticide by sequencing batch moving-bed biofilm reactor after ozonation/Mg-Al layered double hydroxides pre-treated effluent. Separation and Purification Technology, Vol.242,pp.116754.
Huang, Y., Yang, T., Liang, M., Wang, Y., Xu, Z., Zhang, D., Li, L., 2019. Ni-Fe layered double hydroxides catalized ozonation of synthetic wastewater containing Bisphenol A and municipal secondary effluent. Chemosphere, Vol. 235,pp. 143–152.
Malakootian, M., Dadban shahamat, Y., Mahdizadeh, H.,2021. Optimization and modeling of p-nitroaniline removal from aqueous solutions in heterogeneous catalytic ozonation process using MgAl-layered double hydroxides (MgAl-LDH COP). Desalination and Water Treatment, Vol. 223,pp.114–127.
Sohrabi, MR., Moghri, M., Masoumi, HRF., Amiri, S.,Moosavi, N., 2016. Optimization of Reactive Blue 21 removal by nanoscale zerovalent iron using responsesurface methodology. Arabian Journal of Chemistry,9,pp.518-525.
Wu, J., Zhang, H., Oturan, N., Wang, Y., Chen, L., Oturan,, 2012. Application of response surface methodol -ogy to the removal of the antibiotic tetracycline byelectrochemical process using carbon felt cathodeand DSA (Ti/RuO2–IrO2)anode.Chemosphere,Vol.87,pp.614-620.
Dianatitilaki, R., Safarpour, M., 2014. Nitrate removal fromwater by nano zero valent iron in the presence andabsence of ultraviolet light. Journal of MazandaranUniversity of Medical Sciences, Vol.24,151-161.(In Persian)
Zazouli, M., Ebrahimzadeh, MA., Yazdani Charati, J.,Shiralizadeh Dezfoli, A., Rostamali, E., Veisi, F., 2013. Effectof sunlight and ultraviolet radiation in the titaniumdioxide (TiO2) nanoparticles for removal of furfu -ral from water. Journal of Mazandaran University ofMedical Sciences, Vol.23,126-138. (In Persian)
Khani, MR., Kuhestani, H., Kalankesh, Laleh R., Kamarehei, B., Rodríguez-Couto, S., Baneshi, MM.,Dadban Shahamat, Y., 2019. Rapid and high purification of olive mill wastewater (OMV) with the combination electrocoagulation-catalytic sonoproxone processes. Journal of the Taiwan Institute of Chemical Engineers, Vol.97,pp.47-53.
Zazouli, M.A., Dadban Shahamat, Y., Yazdani Charati, J., Roohafzaee, M., 2017.Humic Substances in Water Treatment Plants in Sari and Gorgan and Efficacy of Catalytic Ozonation in their Removaland Mineralization. J Mazandaran Univ Med Sci, Vol. 27, 112- 127. (In Persian)
Xu, ZP., Lu, GQ., 2005. Hydrothermal synthesis of layered double hydroxides (LDHs) from( mixed MgO and Al2O3: LDH formation mechanism. Chem Mater,Vol.17,pp.1055–1062.
Mrozek, O., Ecorchard, P., Vomacka, P., Ederer, J., Smrzova, D., Slusna, MS., Machalkova, A., Nevoralova, M., Benes, H., 2019. Mg-Al-La LDH-MnFe2 O4 hybrid material for facile removal of anionic dyes from aqueous solutions. Appl Clay Sci,Vol.169, 1–9.
Malik, S.N., Ghosh, P.C., Vaidya, A.N., Waindeskar, V., Das, S., Mudliar, S.N., 2017. Comparison of coagulation, ozone and ferrate treatment processes for color, COD and toxicity removal from complex textile wastewater. Water Science and Technology, Vol.76,pp. 1001-1010.
Tabatabaei, FS., Asadi-Ghalhari, M., Aali, R., Mostafaloo, R., Safari, Z., Kamal, F., Esmaeili, R.,2020. Modeling and Optimization of Cefixime Removal from Aqueous Solutions by Potato Starch Using Response Surface Methodology (RSM) . Journal of Health Research in Community, Vol.6,pp.27-37.
Hasanzade, P., Gharbani, P., Derakhshanfard, F., Memar Maher, B., 2022. Modeling and Optimization of Cefixime Removal from Aqueous Solutions by PVDF/G-C3N4/Chitosan Membrane Using Response Surface Methodology. J. Polym. Sci. Technol, Vol.35,139-149.
Mostafaloo, R., Asadi-Ghalhari, M., 2020. Modeling andoptimization of the electrochemical process forcefixime removal from water. Analyt BioanalytElectrochem,Vol. 12,pp.36-47.
Valdés, H., Farfán, VJ., Manoli, JA., Zaror, CA., 2009. Catalytic ozone aqueous decomposition promoted by natural zeolite and volcanic sand. Hazard Mater,Vol.165,pp.915-922.
Leitner, NKV., Fu, H., 2005. pH effects on catalytic ozonation of carboxylic acids with metal on metal oxides catalysts.Top Catal, Vol.33,249-256.
Moussavi, G., Khosravi, R., 2012. Preparation and characterization of a biochar from pistachio hull biomass and its catalytic potential for ozonation of water recalcitrant contaminants. Bioresource Technol,119,pp.66-71.
Zhao, L., Ma, J., Sun, Z-z., Zhai, X-d., 2008. Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese. Appl Catal B Environ,Vol.83, 256-264.
Abdoli, A., Shokuhi, R., Seid, MA., Asgari, G., 2016. Survey of catalytic o zonation process with mgo-modified activated carbon for the removal of metronidazole from aqueous solutions
through a fluidized bed reactor. Sabzevar U Med Sci,Vol. 23, 84-94. (In Persian)
Mohamadi, L., Bazrafshan, E., Noroozifar, M., Ansari-Moghaddam, A., 2016. Ethyl benzene removal from aqueous environments by catalytic ozonation process using MgO nanoparticles. Journal of Mazandaran University of Medical Sciences,Vol. 26,pp.129-144. (In Persian)
Rahmani, A., Asgar, G., Samiee, F., 2013. Evaluation of Performance Catalytic Ozonation with Activated Alumina in the Removal of Pentachlorophenol from Aqueous Solutions and Study of the Intermediates. Sci J Hamadan U Med Sci, 20, pp.77-85. (In Persian)
Valdes, H., Murillo, F., Manoli, J., Zaror, C., 2008. Heterogeneous catalytic ozonation of benzothiazole aqueous solution promoted by volcanic sand. Hazard Mater, 153, pp.1036-1042.
Norabadi, E., Kord Mostafapour, F., Kamani, H., Bazrafshan, E., Ashrafi, SD., pirasteh, K., Dashtizadeh, m., 2018. Photocatalytic process using magnesium oxide nanoparticles for amoxicillin removal from aqueous solution. Journal of Torbat Heydariyeh University of Medical Sciences, 6, pp.1-12. (In Persian)
Yegane Badi, M., Dehghanifard, E., 2018. Study of the Efficiency of Non-Homogeneous Catalytic Ozonation Process using a Catalyst of Magnetic Nanoparticles of Iron Oxide Doped with Silica and Titanium Dioxide in Removal of Metronidazole from Synthetic Wastewater. Journal of Environmental Health Engineering, 5, pp.323-336.
Sobhi, HR., Yegane Badi, M., Esrafili, A., Ghambarian, M., 2020. Evaluation of the efficiency of a photocatalytic process using the magnetic nanocatalyst (Fe3O4@SiO2@TiO2) in the removal of ceftriaxone from aqueous solutions. Journal of Environmental Health Engineering, 7, pp.229-243
Sadat, S A., Salimi, L., Ghafourian, H., Yadegarian Hadji Abadi, L., Taghi Sadatipour, S M., 2022. Optimization and modeling of tetracycline antibiotic removal using TiO2/N/S nanocatalyst in the presence of visible light in aqueous solutions. Armaghan danesh, 27, pp.241-256. (In Persian)
_||_
Githinji, LJ., Musey, MK., Ankumah, RO., 2011. Evaluation of the fate of ciprofloxacin and amoxicillin in domesticWater,Air,&SoilPollution,Vol.219,pp.191-201.
Shemer, H., Kunukcu, YK., Linden, KG., 2006. Degradation of the pharmaceutical metronidazolevia UV, Fenton andphoto-Fenton processes. Chemosphere, Vol.63, pp. 269-276
Mackuľak, T., Mosný, M., Grabic, R., Golovko, O., Koba, O., Birošová, L., 2015. Fenton-like reaction: a possible way to efficiently remove illicit drugs and pharmaceuticals from wastewater. Environ Toxicol Pharmacol, Vol.39, pp. 483-488.
Asadi, Z., Ahmadi, S., 2019. Investigation of the efficiency of coagulation process for ciprofloxacin antibiotic removal from aqueous solution. J Health Res Community, Vol. 5, pp.38-48.
Nasseh, N., Barikbin, B., Nasseri, M.A., 2016. Antibiotics Pollution Damaging Effects on Environment and Review of Efficiency of Different Methods for Removing them. Nurse and Physician within War,Vol.4, pp.50-62. (In Persian)
Mostafaloo, R., Mahmoudian, MH., Asadi-Ghallhari, , 2019. BiFeO-3/Magnetic nanocomposites for thephotocatalytic degradation of cefixime from aqueoussolutions under visible light. Photochem PhotobiolA Chem, Vol. 382, pp.111926.
Khan, MN., Qayum, A., Rehman, UU., Guulab, H., Idrees, , 2015. Spectrophotometric method for quantitativedetermination of cefixime in buik and pharmaceuticalpreparation using ferroin complex. Appl Spectrosc, Vol.82,pp.705-711.
Maheshwari, M., Memon, A., Memon, S., Mughal,, Dayo, A., Memon, N., 2015. Optimization ofHPLC method for determination of cefixime using2-thiophenecarboxaldehyde as derivatizing reagent. Saudi Pharm,Vol. 23,pp.444-452.
Kemper, N., 2008. Veterinary antibiotics in the aquatic andterrestrial environment. Ecol Indicat, Vol.8,1-13.
Radjenović, J., 2008. Rejection of pHarmaceuticals innanofiltration and reverse osmosis membranedrinking water treatment. Water Research, Vol. 45,pp. 3601-3610
Belghadr, I., Shams Khorramabadi, G., Godinib, H.,Almasian, M., 2014. The removal of the cefixime antibioticfrom aqueous solution using an advanced oxidationprocess (UV/H2O2). Desalinat Water Treat,55,pp.1068-1075.
Li, D., Guo, X., Song, H., 2018. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemicaldegradation of ceftriaxone sodium. Hazard Mater, Vol.351,pp. 250-259.
Onyango, MS., Kojima, Y., Aoyi, O., 2004. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. ColloidInterfSci, Vol.279,pp.341-350.
Oller, I., Malato, S., Sánchez-Pérez, J., 2011. Combination ofadvanced oxidation processes and biological treatmentsforwastewaterdecontamination a review. Sci TotalEnviron, Vol.409,pp.4141-4166.
Mohamadiyan, J., Shams Khoramabadi, G., Mussavi, S.A., Kamarehie, B., Dadban Shahamat, Y., Godini, H., 2017. Aniline Degradation Using Advanced Oxidation Process by UV/Peroxy Disulfate from Aqueous Solution. International Journal of Engineering,Vol. 30,pp.684-690
Harrelkas, F., Paulo, A., Alves, MM., El Khadir, L., Zahraa, O.,Pons, MN., 2008. Photocatalytic and combined anaerobic–photocatalytictreatment of textile dyes. Chemosphere, Vol.72,1816-1822.
Moussavi, G., Khosravi, R., Omran, NR., 2012. Development of anefficient catalyst from magnetite ore: characterization andcatalytic potential in the ozonation of water toxic ApplCatalA,Vol.445,pp.42-49.
Kermani, M., Bahrami Asl, F., Farzadkia, M., Esrafili, A.,Salahshour Arian, S., Khazaei, M., 2015. Heterogeneouscatalytic ozonation by Nano-MgO is better than soleozonation for metronidazole degradation, toxicityreduction, and biodegradabilityimprovement.DesalinationWaterTreat, Vol. 57,pp. 1-10.
Nawrocki, J., Kasprzyk-Hordern, B., 2010. The efficiency andmechanisms of catalytic ozonation. ApplCatalBEnviron,99,pp.27-42.
Kermani, M., Farzadkia, M., Esrafili, A., Fallah Jokandan, S.,Yeganeh Badi, M., 2016. Removal of catechol from aqueoussolutions using catalytic ozonation by magneticnanoparticles of iron oxide doped with silica and titaniumdioxide: a kinetic study. Mazandaran U Med Sci,26,pp.139-154. (In Persian)
Tao, Q., Reddy, B.J., He, H., Frost, R.L., Yuan, P., Zhu, J., 2008. Synthesis and infrared spectroscopiccharacterization of selected layered doublehydroxides containing divalent Ni and Co.Materials Chemistry andPhysics,Vol.112,869-875.
Lv, L., He, J., Wei, M., Evans, D., Duan, X., 2006. Factors influencing the removal of fluoride fromaqueous solution by calcined Mg–Al–CO3layered double hydroxides. Journal ofHazardous Materials,Vol 133, pp. 119-128.
Wang, C., Shi, H., Li, Y.,2012. Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts. Applied Surface Science, 258, pp.4328-4333.
Malakootian, M., Dadban shahamat, Y., Mahdizadeh, H. 2020. Purification of diazinon pesticide by sequencing batch moving-bed biofilm reactor after ozonation/Mg-Al layered double hydroxides pre-treated effluent. Separation and Purification Technology, Vol.242,pp.116754.
Huang, Y., Yang, T., Liang, M., Wang, Y., Xu, Z., Zhang, D., Li, L., 2019. Ni-Fe layered double hydroxides catalized ozonation of synthetic wastewater containing Bisphenol A and municipal secondary effluent. Chemosphere, Vol. 235,pp. 143–152.
Malakootian, M., Dadban shahamat, Y., Mahdizadeh, H.,2021. Optimization and modeling of p-nitroaniline removal from aqueous solutions in heterogeneous catalytic ozonation process using MgAl-layered double hydroxides (MgAl-LDH COP). Desalination and Water Treatment, Vol. 223,pp.114–127.
Sohrabi, MR., Moghri, M., Masoumi, HRF., Amiri, S.,Moosavi, N., 2016. Optimization of Reactive Blue 21 removal by nanoscale zerovalent iron using responsesurface methodology. Arabian Journal of Chemistry,9,pp.518-525.
Wu, J., Zhang, H., Oturan, N., Wang, Y., Chen, L., Oturan,, 2012. Application of response surface methodol -ogy to the removal of the antibiotic tetracycline byelectrochemical process using carbon felt cathodeand DSA (Ti/RuO2–IrO2)anode.Chemosphere,Vol.87,pp.614-620.
Dianatitilaki, R., Safarpour, M., 2014. Nitrate removal fromwater by nano zero valent iron in the presence andabsence of ultraviolet light. Journal of MazandaranUniversity of Medical Sciences, Vol.24,151-161.(In Persian)
Zazouli, M., Ebrahimzadeh, MA., Yazdani Charati, J.,Shiralizadeh Dezfoli, A., Rostamali, E., Veisi, F., 2013. Effectof sunlight and ultraviolet radiation in the titaniumdioxide (TiO2) nanoparticles for removal of furfu -ral from water. Journal of Mazandaran University ofMedical Sciences, Vol.23,126-138. (In Persian)
Khani, MR., Kuhestani, H., Kalankesh, Laleh R., Kamarehei, B., Rodríguez-Couto, S., Baneshi, MM.,Dadban Shahamat, Y., 2019. Rapid and high purification of olive mill wastewater (OMV) with the combination electrocoagulation-catalytic sonoproxone processes. Journal of the Taiwan Institute of Chemical Engineers, Vol.97,pp.47-53.
Zazouli, M.A., Dadban Shahamat, Y., Yazdani Charati, J., Roohafzaee, M., 2017.Humic Substances in Water Treatment Plants in Sari and Gorgan and Efficacy of Catalytic Ozonation in their Removaland Mineralization. J Mazandaran Univ Med Sci, Vol. 27, 112- 127. (In Persian)
Xu, ZP., Lu, GQ., 2005. Hydrothermal synthesis of layered double hydroxides (LDHs) from( mixed MgO and Al2O3: LDH formation mechanism. Chem Mater,Vol.17,pp.1055–1062.
Mrozek, O., Ecorchard, P., Vomacka, P., Ederer, J., Smrzova, D., Slusna, MS., Machalkova, A., Nevoralova, M., Benes, H., 2019. Mg-Al-La LDH-MnFe2 O4 hybrid material for facile removal of anionic dyes from aqueous solutions. Appl Clay Sci,Vol.169, 1–9.
Malik, S.N., Ghosh, P.C., Vaidya, A.N., Waindeskar, V., Das, S., Mudliar, S.N., 2017. Comparison of coagulation, ozone and ferrate treatment processes for color, COD and toxicity removal from complex textile wastewater. Water Science and Technology, Vol.76,pp. 1001-1010.
Tabatabaei, FS., Asadi-Ghalhari, M., Aali, R., Mostafaloo, R., Safari, Z., Kamal, F., Esmaeili, R.,2020. Modeling and Optimization of Cefixime Removal from Aqueous Solutions by Potato Starch Using Response Surface Methodology (RSM) . Journal of Health Research in Community, Vol.6,pp.27-37.
Hasanzade, P., Gharbani, P., Derakhshanfard, F., Memar Maher, B., 2022. Modeling and Optimization of Cefixime Removal from Aqueous Solutions by PVDF/G-C3N4/Chitosan Membrane Using Response Surface Methodology. J. Polym. Sci. Technol, Vol.35,139-149.
Mostafaloo, R., Asadi-Ghalhari, M., 2020. Modeling andoptimization of the electrochemical process forcefixime removal from water. Analyt BioanalytElectrochem,Vol. 12,pp.36-47.
Valdés, H., Farfán, VJ., Manoli, JA., Zaror, CA., 2009. Catalytic ozone aqueous decomposition promoted by natural zeolite and volcanic sand. Hazard Mater,Vol.165,pp.915-922.
Leitner, NKV., Fu, H., 2005. pH effects on catalytic ozonation of carboxylic acids with metal on metal oxides catalysts.Top Catal, Vol.33,249-256.
Moussavi, G., Khosravi, R., 2012. Preparation and characterization of a biochar from pistachio hull biomass and its catalytic potential for ozonation of water recalcitrant contaminants. Bioresource Technol,119,pp.66-71.
Zhao, L., Ma, J., Sun, Z-z., Zhai, X-d., 2008. Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese. Appl Catal B Environ,Vol.83, 256-264.
Abdoli, A., Shokuhi, R., Seid, MA., Asgari, G., 2016. Survey of catalytic o zonation process with mgo-modified activated carbon for the removal of metronidazole from aqueous solutions
through a fluidized bed reactor. Sabzevar U Med Sci,Vol. 23, 84-94. (In Persian)
Mohamadi, L., Bazrafshan, E., Noroozifar, M., Ansari-Moghaddam, A., 2016. Ethyl benzene removal from aqueous environments by catalytic ozonation process using MgO nanoparticles. Journal of Mazandaran University of Medical Sciences,Vol. 26,pp.129-144. (In Persian)
Rahmani, A., Asgar, G., Samiee, F., 2013. Evaluation of Performance Catalytic Ozonation with Activated Alumina in the Removal of Pentachlorophenol from Aqueous Solutions and Study of the Intermediates. Sci J Hamadan U Med Sci, 20, pp.77-85. (In Persian)
Valdes, H., Murillo, F., Manoli, J., Zaror, C., 2008. Heterogeneous catalytic ozonation of benzothiazole aqueous solution promoted by volcanic sand. Hazard Mater, 153, pp.1036-1042.
Norabadi, E., Kord Mostafapour, F., Kamani, H., Bazrafshan, E., Ashrafi, SD., pirasteh, K., Dashtizadeh, m., 2018. Photocatalytic process using magnesium oxide nanoparticles for amoxicillin removal from aqueous solution. Journal of Torbat Heydariyeh University of Medical Sciences, 6, pp.1-12. (In Persian)
Yegane Badi, M., Dehghanifard, E., 2018. Study of the Efficiency of Non-Homogeneous Catalytic Ozonation Process using a Catalyst of Magnetic Nanoparticles of Iron Oxide Doped with Silica and Titanium Dioxide in Removal of Metronidazole from Synthetic Wastewater. Journal of Environmental Health Engineering, 5, pp.323-336.
Sobhi, HR., Yegane Badi, M., Esrafili, A., Ghambarian, M., 2020. Evaluation of the efficiency of a photocatalytic process using the magnetic nanocatalyst (Fe3O4@SiO2@TiO2) in the removal of ceftriaxone from aqueous solutions. Journal of Environmental Health Engineering, 7, pp.229-243
Sadat, S A., Salimi, L., Ghafourian, H., Yadegarian Hadji Abadi, L., Taghi Sadatipour, S M., 2022. Optimization and modeling of tetracycline antibiotic removal using TiO2/N/S nanocatalyst in the presence of visible light in aqueous solutions. Armaghan danesh, 27, pp.241-256. (In Persian)