Study on isotherm and kinetic for the adsorption of heavy metal Zinc from aqueous solution by Scenedesmus micro-algae
Subject Areas : Environmental pollutions (water, soil and air)Mona Zelli Booriabadi 1 , Seyed Abbas Hoseini 2 , Seyed Aliakbar Hedayati 3 , Afshin Adeli 4 , Hassan Rezaei 5
1 - MSc of Aquatic Ecology, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources *(Corresponding Author).
2 - Professor of Aquatic Ecology, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources
3 - Associate Professor of Aquatic Ecology, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources
4 - Assistant Professor of Fisheries, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources
5 - Assistant Professor of Environment, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources
Keywords: algae Scenedesus, heavy metal zinc, Isotherms, sorption kinetics,
Abstract :
Background: Zinc is an abundant element in the Earth's crust at approximately 0.04 grams to kilograms. The Zinc sulfide is found mostly in nature. The deposition of Zinc absorption by the amount of soluble in aqueous solutions decreases. In this study, the removal of Zinc was investigated by Scenedesmus algae. Methods: To determine the amount of Zinc absorbed by the absorbent Scenedesmus concentrations of pollutants under different conditions, adsorbent dose, contact time, pH back and the remaining amount was measured by atomic absorption. Adsorption isotherms and kinetic modeling of metal ions on the adsorbent based on the model of Langmuir, Freundlich and kinetics were determined pseudo-first and pseudo-second. Results: absorption and adsorption kinetics by Langmuir and Freundlich isotherm models by the model described by pseudo first order and pseudo-second. The results showed that the correlation coefficient, absorption kinetics of pseudo-second-order model with an amount equal to 1 and the balance by the amount of 0.7926 were described by Freundlich isotherm. Conclusion: This study showed absorption process due to the high correlation algae Scenedesmus sp feature is the removal of Zinc And can be to used proposed as appropriate for the removal of the wastewater.
- Rozic, Q. & Abduthameed, R. 2005. Adsorption of phenol by activated carbon from aqueous solution. Chemoshphere, 34(6):254 -71.
- Sayadi, MH., Rezaei, MR. & Rezaei A. 2015. Sediment Toxicity and Ecological Risk of Trace Metals from Streams Surrounding a Municipal Solid Waste Landfill. Environmental Contamination and Toxicology, 94(5): 559 – 63.
- Quesada, A. & Fernandez-Valiente, E.1997. Enviromental factors controlling N2 fixation in Medditerranean ricefields. Microbial Ecology, 34: 39-48.
- Wong, PK. 2000. Effects of 2,4-D glyphosate and paraquat on growth, photosynthesis and chlorophyll a synthesis of Scenedesmus quadricauda Berb 614. Chemosphere, 41: 177-182.
- Tung, V. P., Lawson, F. & Prince, I. G. 1988. Biotechnology. Bioengineering, Vol. 34, pp. 990-999.
- Reich, R., Ziegler, W. T. & Rogers K. A. 1980. Adsorption of methane, ethane, and ethylene gases and their binary and ternary mixtures and carbon dioxide on activated carbon at 212-301 K and pressures to 35 atmospheres, Industrial Engineering Chemical Process Des. Dev, 19(3): 336-344.
- Hii, SL., Yong, SY. & Wong, CL. 2009. Removal of rhodamine B from aqueous solution by sorption on Turbinaria conoides (Phaeophyta). Journal of Applied Phycology, 21(5):625-31.
- Rabbani, p. & et al. 2009. Biosorption of Cadmium and Nickel Metals by Raw and Processed Cystoseira indica Algae. Journal of Chemical and Petroleum Engineering, Volume 45, Number One, pp. 45-35.(in persian).
- Farhadian, O. & Jafari. O. 2015. Effects of hard media on purification and colony formation in green algae Scenedesmus quadricauda. Journal of Plant Research (Iranian Journal of Biology), (5) 28: 11.(in persian).
- Tripathi,B N. & Gaur,p. j. 2006. Physiological behavior of Scenedesmus sp. during exposure to elevated levels Cu and Zn and after withdrawal of metal stress. Protoplasma, 229: 1-9.
- Surosz,w. & Palinska,K.A. 2004.Effect of heavy metal stress on cyanobacterium Anabaena flos-aquae.Arch. Environmental Contamination and Toxicology, 48: 40-48.
- Heidari, S. & et al. 2011. Biomass Production and Removal of Ammonia and Nitrite from the Wastewater Treatment Plant by Syndemos Green Algae, Journal of Environment. No. 59, pp. 15-28.(in persian).
- Koutahzadeh, N., Daneshvar, E., Kousha, M., Sohrabi, M. S. & Bhatnagar, A. 2013. Biosorption of hexavalent chromium from aqueous solution by six brown macroalgae. Desalination and Water Treatment. 51(31-33): 6021-6030.
- Mirghaffari, N., Moeini, E., & Farhadian, O. 2015. Biosorption of Cd and Pb ions from aqueous solutions by biomass of the green microalga, Scenedesmus quadricauda. Journal of Applied Phycology. 27(1):311-320.
- Ferreira, LS., Rodrigues, MS., Carvalho, JCMd., Lodi, A., Finocchio, E. & Perego, P. 2011. Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira Spirulina platensis and Chlorella vulgaris. I. single metal systems, 173:326–33.
- Senturk HB., Ozdes D., Gundogdu A., Duran C. & Soylak M. 2009. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal of hazardous materials, 172(1):353-62.
- Khorramfar, S., Mahmoodi, N. M., Arami, M. & Gharanjig, K. 2009. Dye removal from colored textile wastewater using tamarindus indica hull: adsorption isotherm and kinetics study. Jornal Color Science Technology, 3: 81-88.
- Rezaei, H. 2013. Biosorption of Chromium by Using Spirulina sp., Arabian Journal of Chemistry, 7(2): 1-8.
- Lagergren, S. 1898. About the theory so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24(4):1-39.
- Bayramoglu G. & Arica, MY. 2008. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. Journal of hazardous materials, 156(1-3):148-55.
- Woodard, F. 2006. Industrial waste treatment handbook. Woburn: Butterworth-Heinemann. 461p.
- Ho, Y.S. & Chiang, C.C. 2001. Sorption studies of acid dye by mixed sorbents. Adsorption. 7: 139-147.
- Low, K. S., Lee, C. K. & Liew, S. C. 2000. Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochemistry, 36(1–2): 59-64.
- Omar, H.H. 2002. Bioremoval of Zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. International biodeterioration & biodegradation, 50(2): 95-100.
- Maraga, J.O., Kimaiyo, Ph.K., Kituyi, L. & Samuel, L. 2016. Biosorption of Cu2+ and Zn2+ Heavy Metal Ions from Test Solutions Using Green Algae biosorbent 4(11):13-19.
- Kumar, R., Bishnoi, N. R. & Garima Bishnoi K. 2008. Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass. Chemical Engineering Journal, 135: 202-208.
- Malakutian, M. & et al. 2011. Kinetics and biosorption isotherm study of heavy metals by aloteric algae from industrial wastewater. Journal of Ilam University of Medical Sciences, 19 (4): 26-36.(in persian).
- Freitas, O.M.M., Martins, R.J.E., Delerue-Matos, C. M. & Boaventura, R.A.R. 2008. Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: kinetic modeling. Journal of Hazardous Materials, 153(1-2): 493-501.
_||_
- Rozic, Q. & Abduthameed, R. 2005. Adsorption of phenol by activated carbon from aqueous solution. Chemoshphere, 34(6):254 -71.
- Sayadi, MH., Rezaei, MR. & Rezaei A. 2015. Sediment Toxicity and Ecological Risk of Trace Metals from Streams Surrounding a Municipal Solid Waste Landfill. Environmental Contamination and Toxicology, 94(5): 559 – 63.
- Quesada, A. & Fernandez-Valiente, E.1997. Enviromental factors controlling N2 fixation in Medditerranean ricefields. Microbial Ecology, 34: 39-48.
- Wong, PK. 2000. Effects of 2,4-D glyphosate and paraquat on growth, photosynthesis and chlorophyll a synthesis of Scenedesmus quadricauda Berb 614. Chemosphere, 41: 177-182.
- Tung, V. P., Lawson, F. & Prince, I. G. 1988. Biotechnology. Bioengineering, Vol. 34, pp. 990-999.
- Reich, R., Ziegler, W. T. & Rogers K. A. 1980. Adsorption of methane, ethane, and ethylene gases and their binary and ternary mixtures and carbon dioxide on activated carbon at 212-301 K and pressures to 35 atmospheres, Industrial Engineering Chemical Process Des. Dev, 19(3): 336-344.
- Hii, SL., Yong, SY. & Wong, CL. 2009. Removal of rhodamine B from aqueous solution by sorption on Turbinaria conoides (Phaeophyta). Journal of Applied Phycology, 21(5):625-31.
- Rabbani, p. & et al. 2009. Biosorption of Cadmium and Nickel Metals by Raw and Processed Cystoseira indica Algae. Journal of Chemical and Petroleum Engineering, Volume 45, Number One, pp. 45-35.(in persian).
- Farhadian, O. & Jafari. O. 2015. Effects of hard media on purification and colony formation in green algae Scenedesmus quadricauda. Journal of Plant Research (Iranian Journal of Biology), (5) 28: 11.(in persian).
- Tripathi,B N. & Gaur,p. j. 2006. Physiological behavior of Scenedesmus sp. during exposure to elevated levels Cu and Zn and after withdrawal of metal stress. Protoplasma, 229: 1-9.
- Surosz,w. & Palinska,K.A. 2004.Effect of heavy metal stress on cyanobacterium Anabaena flos-aquae.Arch. Environmental Contamination and Toxicology, 48: 40-48.
- Heidari, S. & et al. 2011. Biomass Production and Removal of Ammonia and Nitrite from the Wastewater Treatment Plant by Syndemos Green Algae, Journal of Environment. No. 59, pp. 15-28.(in persian).
- Koutahzadeh, N., Daneshvar, E., Kousha, M., Sohrabi, M. S. & Bhatnagar, A. 2013. Biosorption of hexavalent chromium from aqueous solution by six brown macroalgae. Desalination and Water Treatment. 51(31-33): 6021-6030.
- Mirghaffari, N., Moeini, E., & Farhadian, O. 2015. Biosorption of Cd and Pb ions from aqueous solutions by biomass of the green microalga, Scenedesmus quadricauda. Journal of Applied Phycology. 27(1):311-320.
- Ferreira, LS., Rodrigues, MS., Carvalho, JCMd., Lodi, A., Finocchio, E. & Perego, P. 2011. Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira Spirulina platensis and Chlorella vulgaris. I. single metal systems, 173:326–33.
- Senturk HB., Ozdes D., Gundogdu A., Duran C. & Soylak M. 2009. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal of hazardous materials, 172(1):353-62.
- Khorramfar, S., Mahmoodi, N. M., Arami, M. & Gharanjig, K. 2009. Dye removal from colored textile wastewater using tamarindus indica hull: adsorption isotherm and kinetics study. Jornal Color Science Technology, 3: 81-88.
- Rezaei, H. 2013. Biosorption of Chromium by Using Spirulina sp., Arabian Journal of Chemistry, 7(2): 1-8.
- Lagergren, S. 1898. About the theory so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24(4):1-39.
- Bayramoglu G. & Arica, MY. 2008. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. Journal of hazardous materials, 156(1-3):148-55.
- Woodard, F. 2006. Industrial waste treatment handbook. Woburn: Butterworth-Heinemann. 461p.
- Ho, Y.S. & Chiang, C.C. 2001. Sorption studies of acid dye by mixed sorbents. Adsorption. 7: 139-147.
- Low, K. S., Lee, C. K. & Liew, S. C. 2000. Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochemistry, 36(1–2): 59-64.
- Omar, H.H. 2002. Bioremoval of Zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. International biodeterioration & biodegradation, 50(2): 95-100.
- Maraga, J.O., Kimaiyo, Ph.K., Kituyi, L. & Samuel, L. 2016. Biosorption of Cu2+ and Zn2+ Heavy Metal Ions from Test Solutions Using Green Algae biosorbent 4(11):13-19.
- Kumar, R., Bishnoi, N. R. & Garima Bishnoi K. 2008. Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass. Chemical Engineering Journal, 135: 202-208.
- Malakutian, M. & et al. 2011. Kinetics and biosorption isotherm study of heavy metals by aloteric algae from industrial wastewater. Journal of Ilam University of Medical Sciences, 19 (4): 26-36.(in persian).
- Freitas, O.M.M., Martins, R.J.E., Delerue-Matos, C. M. & Boaventura, R.A.R. 2008. Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: kinetic modeling. Journal of Hazardous Materials, 153(1-2): 493-501.