Three years effect of iron and magnesium nano-particles on the stability of aggregates and some soil chemical properties
Subject Areas : Farm water management with the aim of improving irrigation management indicatorsElahe Daraei 1 , Hossein Bayat 2 , Pouya Zamani 3
1 - Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran.
2 - Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran.
3 - Department of Animal Science, Bu-Ali Sina University, Hamedan, Iran.
Keywords: cation exchange capacity, Iron nano oxide, Magnesium nano oxide, Mean weight diameter,
Abstract :
Little is known about the long term effects of nanoparticles on soil properties. Therefore, the objective of this study was to investigate the three years effects of nanoparticles on aggregate stability and some of the soil chemical properties. Different amounts (1, 3 and 5 percentage by weight) of two types of nanoparticle of metal oxides, MgO and Fe3O4 were mixed with a loamy soil in three replications and their possible effects on different properties of the soil after three years were investigated. The results showed that application of nanoparticles, increased the pH of the soil from 7.7 in the control to 8.1- 9.3 and the electrical conductivity from 0.31 in the control to 0.34 -0.56 dSm-1, due to the increase in the alkali cations. The percentage of calcium carbonate increased from 19.75% in the control to 20.5-22.7% due to the accumulation of nanoparticles in the soil, with the highest increase in three variables with 5% magnesium nano oxide. 3% nano iron oxide significantly increased the cation exchange capacity from 23.50 in the control to 24.28 cmolc/kgsoil. Also the nanoparticles increased the mean weight diameter, due to their high specific surface area, with the greater effect of magnesium nano oxide (increased from 33 to 1242 percentage compared to the control) than iron nano oxide (increased from 97 to 173 percentage compared to the control). In general, the results of this study showed that, nanoparticles with specific physico-chemical properties can affect some properties of soil.
روستا، م. و عنایتی، ک. 1392. اثر اصلاحکننده آلی و معدنی بر میانگین وزن-قطر خاکدانهها. پژوهشهای آبخیزداری (پژوهش و سازندگی). شماره 98، صفحههای 24 تا 33.
سالاری، م، پنجهکه، ن و کسرائی، س. 1378. نانوتکنولوژی و کاربرد آن در گیاهپزشکی. مجله گیاهپزشک و غذا، شماره 3: 45-36.
شفاعی، ش، فتوت، آ و خراسانی، ر. 1391. مقایسه تأثیر نانوذرات آهن صفر ظرفیتی و اکسیدهای آهن بر فراهمی فلزات سنگین در خاک آهکی. نشریه آب و خاک (علوم و صنایع کشاورزی). جلد 26، شماره 596:3-586.
قدسی، ع. آستارایی، ع. امامی، ح. و میرزاپور، م. 1390. تأثیر نانو ذرات اکسید آهن و کمپوست زباله شهری گرانوله گوگردی بر غلظت عناصر کم مصرف در خاکهای شور و سدیمی. صفحههای 1 تا 5. دوازدهمین کنگره علوم خاک ایران.
محمدیون، م، دهرآماز، ب، ساغروانی، س. ف، خدادادی دربان، آ. 1396. بررسی تأثیر شستشوی خاک توسط نانوذرات Fe3O4 در دو سامانه پیوسته و ناپیوسته بر ویژگیهای فیزیکوشیمیایی خاک و نانوسیال. مجله علمی-پژوهشی، مهندس عمران مدرس، دوره 17، شماره 4: 212-199.
مرادی، ن، امامی، ح، آستارایی، ع، فتوت، آ و قهرمان، ب. 1395. بررسی تأثیر نانوذرات اکسید آلومینیوم و سیلیسیم بر شاخصهای پایداری ساختمان خاک. نشریه پژوهشهای حفاظت آب و خاک. جلد 23، شماره 5: 265-253.
مهدوی، ش. 1392. حذف فلزات سنگین از محلولهای آبی و کاهش آبشویی و زیستفراهمی آنها از خاک با استفاده از نانوذرات سنتزی. پایاننامه دکتری خاکشناسی دانشکده کشاورزی، دانشگاه بوعلی سینا همدان.
ولائی پشوتن، س. 1393. تأثیر نانوذرات (اکسید آهن و منیزیم) بر خصوصیات فیزیکی و شیمیایی خاک. پایان نامه کارشناسی ارشد خاکشناسی دانشکده کشاورزی دانشگاه بوعلی سینا همدان.
Barthès, B. G., Kouakoua, E., Larré-Larrouy, M. C., Razafimbelo, T. M., de Luca, E. F., Azontonde, A., and Feller, C. L. 2008. Texture and sesquioxide effects on water-stable aggregates and organic matter in some tropical soils. Geoderma, 143(1-2), 14-25.
Bartlett, R. and James, B. 1996. Methods of Soil Analysis, Part 3-Chemical Methods. In Soil Science Society of America, 683-701.
Bayat, H., Kolahchi, Z., Valaey, S., Rastgou, M., and Mahdavi, S. 2019. Iron and magnesium nano-oxide effects on some physical and mechanical properties of a loamy Hypocalcic Cambisol. Geoderma, 335, 57-68.
Ben-Moshe, T., Frenk, S., and Dror, I., Minz, D., and Berkowitz, B. 2013. Effects of metal oxide nanoparticles on soil properties. Chemosphere, 90(2), 640-646.
Bower, C. A., and Reitemeier, R. and Fireman, M. 1952. Exchangeable cation analysis of saline and alkali soils. Soil Science, 73(4), 251-262.
Busscher, W., Novak, J. and Caesar-TonThat, T. C. 2007. Organic matter and polyacrylamide amendment of Norfolk loamy sand. Soil and Tillage Research, 93(1), 171-178.
Clark, J. 1964. An examination of the pH of calcareous soils. Soil Science, 98(3), 145-151.
Colvin, V. L. 2003. The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21(10), 1166-1170.
Dreher, K. L. 2004. Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicological Sciences, 77(1), 3-5.
Dutta, P. K., Ray, A. K., Sharma, V. K., and Millero, F. J. 2004. Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278(2), 270-275.
Ghodsi, A., Astaraei, A. and Emami, H. 2015. Effects of nano iron oxide powder and urban solid waste compost coated sulfur on chemical properties of a saline-sodic soil. Desert, 20(1), 39-46.
Goh, C., Gupta, M., Wei, J., and Lee, L. C. 2007. Characterization of high performance Mg/MgO nanocomposites. Journal of Composite Materials, 41(19), 2325-2335.
Hoet, P. H., Brüske-Hohlfeld, I. and Salata, O. V. 2004. Nanoparticles–known and unknown health risks. Journal of Nanobiotechnology, 2(1), 12.
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., and Zhang, Q. 2012. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 211, 317-331.
Hue, N. 1992. Correcting soil acidity of a highly weathered Ultisol with chicken manure and sewage sludge. Communications in Soil Science and Plant Analysis, 23(3-4), 241-264.
Jacquin, F.and Chouliaras, N. 1976. Evolution de la matière organique dans une rendzine et son interférence sur une classification génétique des humus. Bull AFES, 4, 241-246.
Jośko, I., Oleszczuk, P., Dobrzyńska, J., Futa, B., Joniec, J., and Dobrowolski, R. 2019. Long-term effect of ZnO and CuO nanoparticles on soil microbial community in different types of soil. Geoderma, 352, 204-212.
Kabatia-Pendias, A. and Pendias, H. 1992. Trace elements in soils and plants, CRC Press, Boca. Raton, FL, USA.78-226.
Kemper, W.and Rosenau, R. 1986. Aggregate stability and size distribution. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, 425-442.
Landau, S. 2004. A Handbook of Statistical Analyses Using SPSS: CRC.
Lindsay, W. L. 1979. Chemical equilibria in soils: John Wiley and Sons Ltd.
Luches, P., Benedetti, S., Liberati, M., Boscherini, F., Pronin, I. I., and Valeri, S. 2005. Absence of oxide formation at the Fe/MgO (0 0 1) interface. Surface Science, 583(2-3), 191-198.
Mazaherinia, S., Astaraei, A. R., Fotovat, A., and Monshi, A. 2010. Nano iron oxide particles efficiency on Fe, Mn, Zn and Cu concentrations in wheat plant. World Applied Sciences Journal, 7.
Nanda, K. K., Maisels, A., Kruis, F. E., Fissan, H., and Stapper, S. 2003. Higher surface energy of free nanoparticles. Physical Review Letters, 91(10), 106102.
Barthès, B. G., Kouakoua, E., Larré-Larrouy, M. C., Razafimbelo, T. M., de Luca, E. F., Azontonde, A., and Feller, C. L. 2008. Texture and sesquioxide effects on water-stable aggregates and organic matter in some tropical soils. Geoderma, 143(1-2), 14-25.
Bartlett, R. and James, B. 1996. Methods of Soil Analysis, Part 3-Chemical Methods. In Soil Science Society of America, 683-701.
Bayat, H., Kolahchi, Z., Valaey, S., Rastgou, M., and Mahdavi, S. 2019. Iron and magnesium nano-oxide effects on some physical and mechanical properties of a loamy Hypocalcic Cambisol. Geoderma, 335, 57-68.
Ben-Moshe, T., Frenk, S., and Dror, I., Minz, D., and Berkowitz, B. 2013. Effects of metal oxide nanoparticles on soil properties. Chemosphere, 90(2), 640-646.
Bower, C. A., and Reitemeier, R. and Fireman, M. 1952. Exchangeable cation analysis of saline and alkali soils. Soil Science, 73(4), 251-262.
Busscher, W., Novak, J. and Caesar-TonThat, T. C. 2007. Organic matter and polyacrylamide amendment of Norfolk loamy sand. Soil and Tillage Research, 93(1), 171-178.
Clark, J. 1964. An examination of the pH of calcareous soils. Soil Science, 98(3), 145-151.
Colvin, V. L. 2003. The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21(10), 1166-1170.
Dreher, K. L. 2004. Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicological Sciences, 77(1), 3-5.
Dutta, P. K., Ray, A. K., Sharma, V. K., and Millero, F. J. 2004. Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278(2), 270-275.
Ghodsi, A., Astaraei, A. and Emami, H. 2015. Effects of nano iron oxide powder and urban solid waste compost coated sulfur on chemical properties of a saline-sodic soil. Desert, 20(1), 39-46.
Goh, C., Gupta, M., Wei, J., and Lee, L. C. 2007. Characterization of high performance Mg/MgO nanocomposites. Journal of Composite Materials, 41(19), 2325-2335.
Hoet, P. H., Brüske-Hohlfeld, I. and Salata, O. V. 2004. Nanoparticles–known and unknown health risks. Journal of Nanobiotechnology, 2(1), 12.
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., and Zhang, Q. 2012. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 211, 317-331.
Hue, N. 1992. Correcting soil acidity of a highly weathered Ultisol with chicken manure and sewage sludge. Communications in Soil Science and Plant Analysis, 23(3-4), 241-264.
Jacquin, F.and Chouliaras, N. 1976. Evolution de la matière organique dans une rendzine et son interférence sur une classification génétique des humus. Bull AFES, 4, 241-246.
Jośko, I., Oleszczuk, P., Dobrzyńska, J., Futa, B., Joniec, J., and Dobrowolski, R. 2019. Long-term effect of ZnO and CuO nanoparticles on soil microbial community in different types of soil. Geoderma, 352, 204-212.
Kabatia-Pendias, A. and Pendias, H. 1992. Trace elements in soils and plants, CRC Press, Boca. Raton, FL, USA.78-226.
Kemper, W.and Rosenau, R. 1986. Aggregate stability and size distribution. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, 425-442.
Landau, S. 2004. A Handbook of Statistical Analyses Using SPSS: CRC.
Lindsay, W. L. 1979. Chemical equilibria in soils: John Wiley and Sons Ltd.
Luches, P., Benedetti, S., Liberati, M., Boscherini, F., Pronin, I. I., and Valeri, S. 2005. Absence of oxide formation at the Fe/MgO (0 0 1) interface. Surface Science, 583(2-3), 191-198.
Mazaherinia, S., Astaraei, A. R., Fotovat, A., and Monshi, A. 2010. Nano iron oxide particles efficiency on Fe, Mn, Zn and Cu concentrations in wheat plant. World Applied Sciences Journal, 7.
Nanda, K. K., Maisels, A., Kruis, F. E., Fissan, H., and Stapper, S. 2003. Higher surface energy of free nanoparticles. Physical Review Letters, 91(10), 106102.
Nawaz, H., Solangi, B., Zehra, B., and Nadeem, U. 2011. Preparation of nano zinc oxide and its application in leather as a retanning and antibacterial agent. Canadian Journal on Scientific and Industrial Research, 2(4), 164-170.
Oleszczuk, P., Czech, B., Kończak, M., Bogusz, A., Siatecka, A., Godlewska, P., and Wiesner, M. 2019. Impact of ZnO and ZnS nanoparticles in sewage sludge-amended soil on bacteria, plant and invertebrates. Chemosphere, 237, 124359.
Rasse, D. P., Rumpel, C., and Dignac, M. F. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil, 269(1-2), 341-356.
Rhoades, J. D. 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis: Part 3 Chemical Methods, 5 , 417-435.
Samarajeewa, A. D., Velicogna, J. R., Princz, J. I., Subasinghe, R. M., Scroggins, R. P., and Beaudette, L. A. 2017. Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil. Environmental Pollution, 220, 504-513.
Savage, N. and Diallo, M. S. 2005. Nanomaterials and water purification: opportunities and challenges. Journal of Nanoparticle Research, 7(4-5), 331-342.
Sheikholeslami, R. 2005. Scaling potential index (SPI) for CaCO3 based on Gibbs free energies. AIChE Journal, 51(6), 1782-1789.
Schofield, R. 1950. Effect of pH on electric charges carried by clay particles. European Journal of Soil Science, 1(1), 1-8.
Schwertmann, U. and Taylor, R. M. 1989. Iron oxides. Minerals in Soil Environments, 1, 379-438.
Shi, L.-n., Zhang, X. and Chen, Z.-l. 2011. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45(2), 886-892.
Sims, J. T. 1996. Lime requirement. Methods of Soil Analysis Part 3—Chemical Methods, 5, 491-515.
Six, J., Conant, R. T., Paul, E. A., and Paustian, K .2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241(2), 155-176.
Sojoudi, M. and Mokhtary, M. 2018. Efficient one-pot synthesis of 6-amino-4-aryl-5-cyano-2-methyl-4H-pyran-3-carboxylates catalyzed by nano MgO in water. Quarterly Iranian Chemical Communication, 6, 125-133.
Song, W. and Guo, M. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138-145.
Sparks, D. 2003. Chemistry of soil organic matter. Environmental Soil Chemistry, 75-113.
Sposito, G. 1994. Chemical equilibria and kinetics in soils. Oxford University Press on Demand.
Stumm, W. 1992. Chemistry of the solid-water interface. In: Wiley, New York.
Sun, Y.-P., Li, X.-Q., Zhang, W.-X., and Wang, H. P. 2007. A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 308(1-3), 60-66.
Taha, O. M. E. and Taha, M. R. 2016. Soil-water characteristic curves and hydraulic conductivity of nanomaterial-soil-bentonite mixtures. Arabian Journal of Geosciences, 9(1), 12.
Thomas, G. 1996. Soil pH and soil acidity. Methods of Soil Analysis Part 3—Chemical Methods, 5, 475-490.
Troeh, F. and Thompson, L. 2005. Soils and Soil Fertility (Vol. 489). New York, USA: Blackwell.
Vaseashta, A., Vaclavikova, M., Vaseashta, S., Gallios, G., Roy, P., and Pummakarnchana, O. 2007. Nanostructures in environmental pollution detection, monitoring, and remediation. Science and Technology of Advanced Materials, 8(1-2), 47-59.
Walkley, A. and Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
Yoder, R. E. 1936. A Direct Method of Aggregate Analysis of Soils and a Study of the Physical Nature of Erosion Losses 1. Agronomy Journal, 28(5), 337-351.
Yu, J., Lei, T.-w., Shainberg, I., Mamedov, A. I., and Levy, G. J. 2003. Infiltration and erosion in soils treated with dry PAM and gypsum. Soil Science Society of America Journal, 67(2), 630-636.
Zhou, T., Li, Y. and Lim, T.-T. 2010. Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles: comparisons with other bimetallic systems, kinetics and mechanism. Separation and Purification Technology, 76(2), 206-214.
Zhu, B. and Alva, A. 1993. Trace metal and cation transport in a sandy soil with various amendments. Soil Science Society of America Journal, 57(3), 723-727.
Zolfi-Bavariani, M., Ronaghi, A., Ghasemi-Fasaei, R., and Yasrebi, J. 2016. Influence of poultry manure–derived biochars on nutrients bioavailability and chemical properties of a calcareous soil. Archives of Agronomy and Soil Science, 62(11), 1578-1591.
_||_