Using fractal models for quantifying soil structure and comparison with classical methods
Subject Areas : Farm water management with the aim of improving irrigation management indicatorssepideh mofidi 1 , مهناز اسکندری 2 , ابراهیم پذیرا 3 , مهدی همایی 4
1 - دانشجوی دکترای دانشگاه آزاد اسلامی
2 - استادیار پژوهش، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران
3 - استاد گروه خاکشناسی، واحد علوم‎ وتحقیقات، دانشگاه آزاداسلامی، تهران، ایران
4 - استاد گروه آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران
Keywords: MWD, aggregates stability, GMD, fractal dimension, fractal models,
Abstract :
Soil structure is of great importance from both crop production and water resources management point of views. Since soil structure is often expressed qualitatively, the so-called fractal geometry, as a novel method, can be used to describe the soil structure in a quantitative manner. Using fractal concept and its comparison with the classical aggregate stability methods can assist to better understanding of soil structure. This research was aimed to quantitatively assess the soil aggregate stability by using some fractal and classical models. To attain this purpose, a number 30 soil samples were collected from topsoil of an agricultural area. Then, the mean weight diameter MWD and geometric mean diameter GMD of soil samples were determined by using wet and dry sieving method. The fractal dimensions of soil samples were determined for four fractal models including the number-size and mass-size of Rieu and Sposito, number-size of Mandelbrot, and mass-size of Tyler and Wheatcraft. Results indicated that the range of fractal dimensions for mass-size model of Rieu and Sposito in dry condition varies from 2.86 to 2.92 and in wet condition from 2.90 to 2.99., this range for Tyler and Wheatcraft model was 2.52 to 2.78 and 2.24 to 2.55, for dry and wet conditions, respectively. Results further showed that for the number-size model of Rieu and Sposito the fractal dimension varied from 2.77 to 3.59 in the dry and from 2.35 to 3.18 in wet conditions. These ranges for Mandelbrot model were obtained to be 2.89 to 3.72 and 2.21 to 3.22 for the dry and wet sieves, respectively. The largest standard deviation was obtained for MWD, while the lowest belonged to the mass-size model of Rieu and Sposito. The obtained results further indicated that by increasing the fractal dimension, aggregate stability decreases and aggregate instability tend to increase. It can be then concluded that by using fractal dimensions one can more precisely describe the aggregate stability compares to the classical methods.
بای بوردی، م. 1388 . فیزیک خاک. انتشارات دانشگاه تهران.چاپ نهم. 676 صفحه
کرمی، ع.، همایی، م.، بای بوردی، م. و محمودیان شوشتری، م. 1391 . کمّی سازی پارامترهای نفوذ آب به خاک با استفاده از
مقیاس سازی. پژوهش آب ایران. 6 ( 11 :) 73 - 65 .
محمدیان خراسانی، ش.، همایی، م. و پذیرا، ا. 1394 . ارزیابی پایداری خاکدانه ها با استفاده از مدل های فرکتالی و روش های
کلاسیک. نشریه حفاظت منابع آب و خاک. 4 ( 3 :) 51 - 39 .
Amezketa, E. 1999. Soil aggregate stability: A review. Sustain. Agric. 14: 83–151.
Anderson, A.N., McBratney, A.B. and Crawford, J.W. 1998. Applications of fractals to soil studies. Advances in Agronomy. 63: 2-76.
Bronick, C.J. and Lal. R. 2005. Soil structure and management: a review. Geoderma. 124: 3-22.
Eghball, B.L.N., Mielke, G., Calvo, A., and Wilhelm, W.W. 1993. Fractal description of soil fragmentation for various tillage methods and crop sequences. Soil Science Society of America Journal. 57: 1337–1341.
Filgueira, R.R., Fournier, L.L., Crisola, C.I., Gelati, P. and Garcia, M.G. 2006. Particle-size distribution in soils: A critical study of the fractal model validation. Geoderma. 134: 327-334.
Filgueira, R.R., Fournier, L.L. Sarli, G.O., Aagon, A. and Rawals, W.J. 1999. Sensivity of fractal parameters of soil aggregates to different management practices in a Phaeozem in centeral Argentina. Soil and Tillage Research. 52: 217-222.
Gulser, C. 2006. Effect of forage cropping treatments on soil structure relationships with fractal dimensions. Geoderma. 131: 33–44.
Hwang, S.I., Lee, K.P., Lee, D.S. and Powers, SE. 2002. Models for estimating soil particle-size distributions. Soil Science Society of America Journal. 66:1143-1150.
Kay, B.D. 2000. Soil Structure, in: Handbook of Soil Science. CRC Press, E. M. Sumner, Ed., USA: F.I. Boca Raton. 229–264.
Kemper, W.D. and Rosenau, R.C. 1986. Aggregate stability and size distribution, in: Methods of Soil Analysis. Part1. Physical and Mineralogical Methods, Klute. A., Ed. 425–442.
Kravchenko, A. and Zhang. R. 1998. Estimating the soil water retention from particle size distribution: a fractal approach. Soil Science Society of America Journal. 163: 171-179.
Liu, X., Zhang, G., Heathman, G.C., Wang, Y. and Huang, C.H. 2009. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China. Geoderma 154: 123–130.
Mandelbrot, B.B. 1982. The fractal geometry of nature. W.H. Freeman and Company. New York. 468 p.
Marquez, C.O., Garcia, V.J., Cambardella, C.A., Schultz, R.C. and Isenhart, T.M. 2004. Aggregate size stability distribution and soil stability. Soil Science Society of America Journal. 68: 725-735.
Martinez-Mena, M., Deeks, L. and Williams, A. 1999. An evaluation of a fragmentation fractal dimension technique to determine soil erodibility. Geoderma. 90: 87-98.
Mazurak, A.P. 1950. Effect of gaseous phase on water-stable synthetic aggregates. Soil science society of america journal. 69: 135–148.
Mena, M., Deeks, L.K. and Williams, AG. 1999. An evaluation of a fragmentation dimension technique to determine soil erodobility. Geoderma. 90:87-98.
Paz-Ferrero, J., Vidal-Vazquez, E. and Miranda. G.V. J. 2010. Assessing soil particle-size distribution on experimental plots with similar texture under different management systems using multifractal parameters. Geoderma. 160: 47-56.
Perfect, E. 1999. Estimating soil mass fractal dimension from water retention curves. Geoderma 88: 221-231.
Perfect, E., Kay, B.D., and Rasiah, V. 1993. Multifractal model for soil aggregate fragmentation. Soil Science Society of America Journal. 57: 896–900.
Pirmoradian, N., Sepaskhah, A.R. and Hajabbasi, M.A. 2005. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments. Biosystems Engin. 90(2): 227-234.
Rasiah, V., Kay, B. and Perfect, E. 1993. New mass-based model for estimating fractal dimensions of soil aggregates. Soil Science Society of America Journal. 57: 891-895.
Rieu, M., and Sposito, G. 1991a. Fractal fragmentation, soil porosity, and soil water properties: I. Theory. Soil Science Society of America Journal. 55(5): 1231-1238.
Rieu, M. and Sposito, G. 1991b. Fractal fragmentation, soil porosity, and soil water properties: Π. Aplications. Soil Science Society of America Journal.. 55:1239-1244.
Robertson, J., Thomas, C.J., Caddy, B., and Lewis, A.J.M. 1984. Particle size analysis of soils — A comparison of dry and wet sieving techniques. Forensic Science International. 24: 209-217.
Sepaskhah, A. R. and Tafteh, A. 2011. Pedotransfer function for estimation of soil-specific surface area using soil fractal dimension of improved particle-size distribution. Archives of Agronomy and Soil Science. 1-11.
Tongway, D.J. and Hindley, N.L. 2004. Landscape Function Analysis: procedures for monitoring and assessing landscapes with special reference to mine sites and rangelands, Version 3.1. Canberra Australia: CSIRO Sustainable Ecosystems.
VanBavel, C.H.M. 1949. Mean weight-diameter of soil aggregation as a statistical index of aggregation. Soil Science Society of America Journal. 14: 20–23.
Wang, D., Fu, B., Fhao, W., Hu, H. and Wang, Y. 2008. Multifractal characteristics of soil particle size distribution under different land-use types on the Loess Plateau, China. Catena. 72: 29-36.
Wang, X., Li, M.H., Liu, S. and Liu, G. 2006. Fractal characteristics of soils under different land-use patterns in the arid and semiarid regions of the Tibetan Plateau, China. Geoderma. 134: 56-61.
Yoder, R.E. 1936. A direct method of aggregate analysis and a study of a physical nature of erosion losses. Journal of the American society of Agron. 28: 337-351.
Young, I.M., and Crawford, J.W. 1991. The fractal structure of soil aggregates: its measurement and interpretation. Journal of Soil Science. 42: 187–192.
Zolfaghari, A.A. and Hajabbasi. M.A. 2008. Effect of different land use treatments on soil structural quality and relations with fractal dimensions. Soil Science Society of America Journal. 3: 101-108.