Dependency of runoff characteristics on the plot scale in rainfed land under semi-arid rainfalls
Subject Areas : Farm water management with the aim of improving irrigation management indicatorsعلی رضا واعظی 1 , مژگان نوقان 2 , مجید فرومدی 3
1 - گروه علوم خاک-دانشکده کشاورزی-دانشگاه زنجان
2 - کارشناسی ارشد خاکشناسی از دانشگاه زنجان
3 - دانشجوی دکتری خاکشناسی دانشگاه زنجان
Keywords: total runoff volume, runoff coefficient, erosion plot, runoff per area,
Abstract :
Runoff is the major soil erosive factor which can be controlled to different factors such as hillslope length.Knowledge of the role of hillslope length in runoff can help in designing soil conservation practices particularlyin rainfed lands. This study was carried out to investigate the effect of slope length on runoff in rainfed lands ofsemi-arid regions, north west of Iran. Twenty two plots with different lengths ranging from 1 to 22.1 m and withthe same width were installed on a 10% slope according to the Universal Soil Loss Equation model. Runoffcharacteristics (total runoff volume, runoff per area and runoff coefficient) were determined for a fourteen-monthperiod from March 2015 to Jun 2016. The results indicated that significant difference was found among the plotsin total runoff volume (P< 0.0001). Total runoff volume was significantly differed from 1-m plot to 8-m plotwhile in the higher plots (from 9-m to 22.1-m plots) there was no statistically difference among the plots(R2=0.97). In general, a significant relationship was found between total runoff and the plot length. Runoffcoefficient was largely differed in the rainfall event. There was no significant relationship between runoffcoefficient and rainfall intensity. Runoff per area increased from plot 1-m to plot 8-m and decreased gradually inthe larger plots. According to this result, plot 8-m can be considered as a proper plot for investigating runoff inthe rainfed lands.
اسدزاده، ف.، گرجی، گرجی، م.، واعظی، ع.ر.، سکوتی، ر و میرزایی، س. 1392. اثر اندازه کرت بر میزان رواناب و رسوب اندازهگیری شده ناشی از رگبارهای طبیعی. نشریه حفاظت منابع آب وخاک، 2(4): 80-70.
اسدزاده، ف.، گرجی، م.، واعظی، ع.ر.، سکوتی، ر. و شرفا، م. 1390. ارزیابی اثر ابعاد کرتهای صحرایی بر میزان رواناب حاصله از رخدادهای بارندگی. پنجمین کنفرانس سراسرس آبخیزداری و مدیریت منابع آب و خاک،10 اسفند، کرمان.
رفاهی، ح.ق. 1393. فرسایش آبی و کنترل آن. چاپ هفتم. مؤسسه چاپ و انتشارات دانشگاه تهران. صفحه 25-32.
شعبانی، ح. 1393. مطالعه تغییرپذیری مکانی خصوصیات خاک با استفاده از تکنیک زمین آمار در محدودهی دانشگاه زنجان. پایاننامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه زنجان. 209 صفحه.
قربانی، ش.، کلیعلی، س. و نادری، م. 1394. تأثیر پوشش سنگریزه سطحی بر فرسایش شیاری بر اساس تشکیل شیار در سطح خاک. نشریه محیط زیست و توریسم، صفحه 14-15.
کلانتری، م.، عباسی، ع. و شیرانی، م. 1387. مطالعات طرح آمایش استان زنجان. معاونت برنامه ریزی استانداری زنجان، صفحه 27-32.
واعظی، ع.ر. و قرهداغلی، ح. 1392. کمیسازی گسترش فرسایش شیاری در خاکهای مارنی در حوزه آبخیز زنجانرود در شمال غرب زنجان. نشریه آب و خاک، 27: 872-881.
واعظی، ع.ر. و وطنی، ا. 1393. هدررفت خاک در شیارها و تغییرات زمانی آن طی بارندگی در خاکهای با بافت مختلف. نشریه دانش آب و خاک، 3: 92-83.
Aghassi, M. and Ben Hur, M. 1991. Effect of Slope Length, Aspect and Phosphogypsum on Runoff and Erosion from Steep Slopes. Australian Journal Soil Research, 29: 197-207.
Angers, D. A., Edwards, L. M., Sanderson, J. B. and Bissonnette, N. 1999. Soil organic matter quality and aggregate stability under eight potato cropping sequences in a fine sandy loam of Prince Edward Island. Canadian Journal of Soil Science, 79(3): 411-417.
Angers, D.A. and Mehuys, G.R. 1993. Aggregate stability to water. In: Carter, M.R. (Ed.), Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Lewis Publishers. Boca Raton. pp: 651–657.
Asadzadeh, F., Gorji, M., Vaezi, A., Sokouti, R. and Shorafa, M. 2012. Scale Effect on Runoff from Filed Plots under Natural Rainfall. American-Eurasian Journal of Agricultural and Environmental Science, 12(9):1148-1152.
Bagarello, V. and Ferro, V. 2004. Plot-scale measurement of soil erosion at the experimental area of Sparacia (southern Italy). Hydrological Processes, 18: 141–157.
Bagarello, V. and Ferro, V. 2010. Analysis of soil loss data from plots of different length for the Sparacia experimental area, Sicily, Italy. Biosystems Engineering, 105: 411–422.
Bagarello, V., Ferro, G., Giordano, F., Mannocchi, V., Pampalone, F. and Vergni, L. 2011. Effect of plot size on measured soil loss for two Italian experimental sites. Biosystems Engineering, 18-27.
Barthes, B. and Roose, A. 2002. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena, 77: 133-149.
Blake, G.R. and Hartge, K.H. 1986. Bulk density, In: Klute, A. (Ed.), Methods of Soil Analysis, Part 1, 2nd ed. Agronomy Monograph, 9. American Society of Agronomy. Madison, WI, 363-375.
Boix-Fayos, C., Calva, A., Imeson, A.C. and Sorino-Sota, M.D. 2001. Influence of soil properties on the aggregation of some Mediterranean soils and use of aggregate size and semiarid land use East and Central Asia. Science in China (Series c), 45: 48-54.
Boix-Fayos, C., Martinez-Mena, M., Arnau-Rosalen, E., Calvo-Cases, A., Castillo, V. and Albaladejo, J. 2006. Measuring soil erosion by field plots: understanding the sources of variation. Earth-Science Reviews, 78(3):267-285.
Boix-fayos, C., Martinez-Mena, M., Calvo-Cases, A., Arnau- Rosalen, E., Albaladejo, J. and Castillo, V. 2007. Causes and underlying procesesof measurement variability in field erosion plots in Mediterranean conditions. Earth surf. Processes Landforms, 32: 85-101.
Cammeraat, L.H. 2002. A review of two strongly contrasting geomorphological systems within the context of scale. A review of two strongly contrasting geomorphological systems within the context of scale, 27 (11): 1201- 1222.
Chaplot, V. and Le Bissonais, Y. 2000. Field measurements of interrill erosion under different slopes and plot sizes. Earth Surface Processes and Landforms, 25: 145–153.
Chen, X., Zhao, Y., Mi, H. and Mo, B. 2014. An improved experimental method for simulating erosion processes by concentrated channel flow. CrossMark, 9:148-150.
Dahnke, W.C. and Whitney, D.A. 1988. Measurement of soil salinity. Recommended chemical soil test procedures for the North Central Regional Publication 221. North Dakota Agricultural Experiment Staton Bull, 499, 32-34.
Duiker, S.W. Flanagan, D.C. and Lal, R. 2001. Erodibility and infiltration characteristics of five major soil of southwest Spain. Catena, 45: 103-121.
Dunjo, G., Pardini, G. and Gisbert, M. 2004. The role of land use and land cover on runoff generation and sediment yield at a micro plot scale in a small Mediterranean catchment. Journal of Arid Environments, 57:239–256.
Felton, G.K. 1995. Soil hydraulic properties on municipal solid waste. Trans American Society of Association Executives, 38(3): 775-782.
Joel, A., Messing, I., Seguel, O. and Casanova, M. 2002. Measurement of surface water runoff from plots of two different sizes. Hydrological Processes, 16: 1467–1478.
Jordan, A. and Martinez-Zavala, L. 2008. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. Forest Ecology and Management, 255: 913-919.
Kinnell, P.I.A. 2009. The impact of slope length on the discharge of sediment by rain impact induced saltation and suspension, Earth Surface Processes Landforms, 34 (10): 1393–1407.
Kinnell, P.I.A. 2010. Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. Journal of Hydrology, 385: 384-397.
Kirkby, M.J., Bracken, L. and Reaney, S. 2002. The influence of land use, soils and topography on the delivery of hillslope runoff to channels in SE Spain. Earth Surface Processes and Landforms, 27(13): 1459-1473.
Klute, A. 1986. Methods of Soil Analysis, Part I: Physical and Mineralogical Methods. SSSA Book Series No. 5. Soil Science Society of American Madison, 1188 pp.
Lal, R. 1997. Soil degradative effects of slope length and tillage methods on alfisols in western Nigeria. I. Runoff, erosion and crop response. Land Degradation and Development, 8 (3): 201–219.
Le Bissonnais, Y., Benkhadra, H., Chaplot, V., Fox, D., King, D. and Daroussin, J. 1998. Crusting, runoff and sheet erosion on silty loamy soils at various scales and upscaling from m2 to small catchments, 1998. Soil and Tillage Research, 46: 69–80.
Li, X.Y. 2003. Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China. Catena, 52: 105-127.
Li, Z., Zhang, G., Geng, R. and Wang, H. 2015. Rill erodibility as influence by soil and land use in a small watershed of the Loess Plateau, China. Biosystems Engineering, 129: 248-257.
Moreno, M., Heras, L., Nicolau, J., Martin, L.M. and Wilcox, B.P. 2010. Plot‐scale effects on runoff and erosion along a slope degradation gradient. Water Resources Research, 46: 1-12.
Ollesch, G. and Vacca, A. 2002. Influence of time on measurement results of erosion plot studies. Soil and Tillage Research, 67: 23–39.
Parsons, A.J., Wainwright, J., Powell, D.M., Kaduk, J. and Brazier, R.E. 2004. A conceptual model for determining soil erosion by water. Earth Surface Processes and Landforms, 29: 1293–1302.
Ramos, M.C. and Martinez- Casasnovas, J.A. 2006. Trends in precipitation concentration and extremes in the Mediterranean penedes- Anoiu region, NE Spain. Climatic Change, 74: 457-474.
Ries, J. and Band Hirt, U. 2008. Permanent of soil surface crust on abandoned farmland in the central Ebro Basin/ Spain. Catena, 72: 282-296.
Sadeghi, S.H.R. and Behzadfar, M. 2004. Temporal variation of rainfall erosivity factor in Mazandaran Province. Iran, In: The Fourth International Iran and Russia Conference or Agriculture and Natural Resource, Shahr Kord, Iran, 8-10 September, PP. 1280-1285.
Sadeghi, S.H.R., BashariSeghaleh, M. and Rangavar, A.S. 2013. Plot sizes dependency of runoff and sediment yield estimates from a small watershed. Catena, 102: 55-61.
Shen, H., Zheng, F., Wen, L., Han, Y. and Hu, W. 2016. Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil and Tillage Research, 155: 429-436.
Tejada, M. and Gonzalez, J.L. 2007. Influence of organic amendments on soil structure and soil loss under simulated rain. Soil and Tillage Research, 93: 197-205.
Thomas, E.L. and Vestena, L.R. 2012. Measurement of runoff and soil loss from two differently sized plots in a subtropical environment (Brazil). Earth Surface Processes and Landforms, 37: 363-373.
Vaezi. A.R., Bahrami. H.A., Sadeghi, S.H.R. and Mahdian. M.H. 2010. Modeling relationship between runoff and soil properties in dry-farming lands, NW Iran. Hydrology and Earth System Sciences Discussions, 7:2577–2607.
Vaezi. A.R., Sadeghi, S.H.R., Bahrami, H.A. and Mahdian, H. 2008. Modeling the USLE K-factor for calcareous soil in north western Iran, Geomorphology, 97: 411-423.
Walkley, A. and Black, C.A. 1947. Determination of organic matter in the soil by chromic acid digestion. Soil Science, 63: 251–264.
Wilcox, B.P., Breshears, D.D. and Allen, C.D. 2003. Ecohydrology of a resource‐conserving semiarid woodland: Effects of scale and disturbance, Ecological. Monographs, 73: 223– 239.
Williams, J.D. and Backhouse, J.C. 1991. Surface runoff plot design for use in watershed research. Journal of Range Management, 44: 411-412.
Wischmeier, W.H. and Smith, D.D. 1978. Predicting rainfall erosion losses: A guide to conservation planning, Agric. Handbook., 537, U.S. Depatment of Agricultural Science and Educational Administration, Washington, D.C.
_||_