Uncertainty assessment DWB model by using GLUE method (Case study: Andrabi and Farvbrman catchments)
Subject Areas : Farm water management with the aim of improving irrigation management indicatorsSaeed Emamifar 1 , Kamran Davari 2 , Hussain Ansari 3 , Bijan Ghahraman 4 , Seyed Mahmoud Hosseini 5 , Mohsen Nasseri 6
1 - دانشجوی دکتری آبیاری و زهکشی؛گروه مهندسی آب؛ دانشکده کشاورزی؛ دانشگاه فردوسی مشهد؛ مشهد؛ ایران
2 - استاد؛ گروه مهندسی آب؛ دانشکده کشاوری؛ دانشگاه فردوسی مشهد؛ مشهد؛ ایران
3 - دانشیار؛ گروه مهندسی آب؛ دانشکده کشاوری؛ دانشگاه فردوسی مشهد؛ مشهد؛ ایران
4 - استاد؛ گروه مهندسی آب؛ دانشکده کشاوری؛ دانشگاه فردوسی مشهد؛ مشهد؛ ایران
5 - استاد؛ گروه مهندسی عمران؛ دانشکده فنی مهندسی؛ دانشگاه فردوسی مشهد؛ مشهد؛ ایران
6 - استادیار؛ گروه مهندسی عمران؛ دانشکده فنی مهندسی؛ دانشگاه تهران؛ تهران؛ ایران
Keywords: GLUE, Runoff, Budyko framework, DWB model,
Abstract :
The analysis uncertainty of hydrological models and identify the statistical properties them basis of existing relationships between of the model parameters and inputs is numerous of the most important hydrological modeling. In this context one of the known methods for modeling the water balance at the catchements scale is Dynamic water balance model (DWB) that By Zhang et al. (2008) developed. In this study, the model calibration and uncertainty assessment in the Andrab and Farvbrman catchments from the Kalshvr River branches (Nishapur catchment) respectively at the zarandand and Eyshabad hydrometery stations, located in semi-arid regions by using Generalized likelihood uncertainty estimation (GLUE) method was studied. The results indicated that in terms of the ability to identify, Between four parameters of the model, Retention efficacy parameter (ω_1) and basin water storage capacity (s_max [mm]) in the calibration process was less of the ability to identify (The specific domain ptimum for their can not be found) and uncertainty in the runoff simulated by the model, have a greater role. In this direction, the efficacy parameter evapotranspiration (ω_2) and the gradual flow (d), resistant behavior of the errors in the runoff observation and are so-called conservative. Evaluation of uncertainty runoff simulated showed that in general, GLUE method is well managed that it calibrate amount of runoff from case study, so that more of the runoff data recorded (over 55%) in the range of 95 percent.
ایزدی، ع. 1392. کاربرد و ارزیابی یک مدل توسعه یافته تلفیقی آب زیرزمینی آب سطحی در حوضه آبریز نیشابور. رساله دکتری، دانشگاه فردوسی مشهد، دانشکده کشاورزی، گروه مهندسی آب. 227 صفحه.
پوررضا بیلندی، م.، آخوند علی، ع، م. و قهرمان، ب. 1391. تحلیل عدم قطعیت در برآورد پارامترهای مدل توزیعی بارش-رواناب با کاربرد الگوریتم مونت کارلو- زنجیره مارکف. مجله پژوهش آب ایران. سال ششم. شماره یازدهم. ص 167-176.
سینگی، و، پ. ۱۳۸۱. سامانههای هیدرولوژیکی (مدل سازی بارندگی‐ رواناب). ترجمه محمد رضا نجفی. جلد اول، چاپ اول، انتشارات دانشگاه تهران، 578 صفحه.
شفیعی، م. 1393. تحلیل عدم قطعیت در کاربرد مدلهای آگرو ـ هیدرولوژی. رساله دکتری، دانشگاه فردوسی، داشکده کشاورزی، گروه مهندسی آب، 126 صفحه.
شفیعی، م.، انصاری، ح.، داوری، ک. و قهرمان، ب. 1392. واسنجی و تحلیل عدم قطعیت یک مدل نیمه توزیعی در یک منطقه نیمهخشک، مطالعه موردی حوضه آبریز نیشابور. مجله علوم و فنون کشاورزی منابع طبیعی. سال هفدهم. 64: 137-149.
قهرمان،ب.، شریفان، ح.، داوری، ک. و کریمی راد، ا. 1392. بررسی مناسبترین ضریب تصحیح روش هارگریوز-سامانی برای برآورد تبخیر و تعرق گیاه مرجع (مطالعه مورد: استان خراسان رضوی). نشریه آبیاری و زهکشی ایران. 4 (7): 466-477.
Abbaspour, K.C. 2009. User Manual for SWAT-CUP SWAT calibration and uncertainty analysis programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland, 325 pp.
Allen, R.G., L.S. Pereira, D. Raes and M. Smith. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper No. 56- FAO, Rome.
Arora, V. K. 2002. The use of the aridity index to assess climate change effect on annual runoff,J. Hydrol., 265: 164–177.
Beven K. J. and A. Binley. 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 6(3): 279-298.
Beven, K.J. 1996. Equifinality and Uncertainty in Geomorphological Modelling, in BL Rhoads and C E Thorn (Eds.), the Scientific Nature of Geomorphology, Wiley: Chichester, 289-313.
Bowen, I. S. 1926. The ratio of heat losses by conduction and by evaporation from any water surfaceIn: Rosenberg, N. J. (Eds.) Microclimate: The Biological Environment. Wiley. New York, 124 pp.
Budyko, M. I. 1974: Climate and life, Academic, New York, 185 pp.
Campbell E. P. Fox D. R. and Bates B. C. 1999. A Bayesian approach to parameter estimation and pooling in nonlinear flood event models. Water Resource Research, 35:211-220.
Donohue RJ, Roderick ML, McVicar2 TR. 2007. On the importance of including vegetation dynamics in Budyko’s hydrological model.Hydrological Earth System Science, 11: 983–995.
Fang, Z., Zhang, L., and Xu, Z.: 2009.Effects of vegetation cover change on stream flow at a range of spatial scales, 18th World IMACS/MODSIM Congress cairns Australia, 13–17 July, 134 pp.
Freer J, Beven KJ, Ambroise B. 1996. Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach.Water Resources Research, 32(7): 2161–2173
Fu, B. P., 1981, On the calculation of the evaporation from land surface, Sci. Atmos. Sin., 5(1): 23–31.
Gerrits A.M.J. Savenije H.H.G. Veling E.J.M. Pfister L. 2009. Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model. Water Resources Research, 45: 44-53.
Hargreaves, G. H. and Samani, Z. A. 1982 .Estimating potential evapo-ration. J. Irrig. Drain. Eng.-ASCE, 108(3): 225–230.
Manache G, Melching CS. 2008. Identification of reliable regression- and correlation-based sensitivitymeasures for importance rankingofwater-quality model parametersEnvironmental Modelling & Software, 23:549–562.
Mein R. G. and Brown B. M. 1978. Sensitivity of optimized parameters in watershed models. Water Resources Research, 14: 299-303.
Milly P.C.D. 1994. Climate, soil water storage, and the average annual water balance. Water Resources Research, 30(7): 2143-2156.
Nash, J.E., and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models, part 1: A discussion of principles. Journal of Hydrology, 10: 282–290.
Potter, N. J. and Zhang, L.2009: Inter annual variability of catchment water balance in Australia, Journal of Hydrology, 369: 120-129.
Sankarasubramania, A. and Vogel, R. M.: 2003. Hydroclimatology of the contential United States, Geophys. Res. Lett., 30, 1363, doi:10.1029/2002GL015937.
Sankarasubramanian A. Vogel R.M. 2002. Annual hydroclimatology of the United States. Water Resources Research, 38(6):1083-1095.
Stedinger J.R., Vogel R.M., Lee S.U., and Batchelder R.2008. Appraisal of the generalized likelihood uncertainty estimation (GLUE) method, Water Resources Research, 44: 1-17.
Tekleab.S, S.Uhlenbrook, Y. Mohamed, H. H. G. Savenije, M. Temesgen,J. Wenninger, 2011, Water balance modeling of Upper Blue Nile catchments using a top-down approach, Hydrol. Earth Syst. Sci., 15: 2179–2193
Vrugt J. A. Gupta H. V. Bouten W. and Sorooshian S. 2003. A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resources Research, 39(8):1-14.
Yang, D., Sun, F., Liu, Z., Cong, Z., Ni, G., Lei, Z., 2007. Analyzing spatial and temporal variability of annual water–energy balance in nonhumid regions of China usingthe Budyko hypothesis. Water Resources Research 43, W04426. Doi: 10.1029/ 2006.WR005224.
Zhang L. Potter N. Hickel K. Zhang Y. Shao Q. 2008. Water balance modelling over variable time scales based on the Budyko framework-model development and testing. Journal of Hydrology, 360:117-131.
Zhang, L., K. Hickel, W.R. Dawes, F.H.S. Chiew, A.W. Western, and P.R. Briggs. 2004. A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 40, W02502,doi:10.1029/2003WR002710.