Presenting of nonlinear hybrid model based on Extreme Value Theory for forecasting the Conditional Value at Risk (CVaR)
Subject Areas : Financial Knowledge of Securities AnalysisEhsan Mohammadian Amiri 1 , Ehan Atefi 2 , Seyed Babak Ebrahimi 3
1 - MSc. Student in Financial Engineering, Faculty Of Industrial Engineering, K.N.Toosi University Of Technology,Tehran,
2 - MSc. Student in Financial Engineering, Faculty Of Industrial Engineering, K.N.Toosi University Of Technology,Tehran
3 - Assistant Prof., Faculty Of Industrial Engineering, K.N.Toosi University Of Technology, Tehran, Iran,
Keywords: Conditional Value at Risk, Extreme Value Theory, HWES-EVT model, GARCH-EVT model, Peak Over Thershold approach,
Abstract :
The political and economic instability in recent years and followed by rapid changes in the realm of financial markets, has increased the risk of most financial institutions. So that risk managers at these institutions are worried about the decline in their asset value over the coming days. In recent studies, generally the Conditional Value at Risk is used to measure and forecast the risks existing in financial markets. Therefore, in this research, it has been attempted to introduce, calculate and implement a nonlinear hybrid model for forecasting the Conditional Value at Risk. For this purpose, the new hybrid model based on the Extreme Value Theory and the Holt-Winters exponential smoothing (HWES-EVT) that, in addition to dynamics, cluster characteristics and broad data sequence, also takes into account the forecast Conditional Value at Risk of the industry and Tehran Stock Exchange Indices. For evaluating the accuracy the performance of proposed hybrid model, this modek is compared with the GARCH-EVT model. The results of backtesting show that the proposed hybrid approach provides a more accurate answer to the forecasting of Conditional Value at Risk for these indicators Indices.
* زمانی، شیوا, اسلامی، بیدگلی، سعید, کاظمی، معین. (1392). محاسبه ارزش در معرض ریسک شاخص بورس اوراق بهادار تهران با استفاده از نظریه ارزش فرین، فصل نامه بورس اوراق بهادار.6(21)، 115-136.
* سارنج، علیرضا، نوراحمدی، مرضیه. (1395). تخمین ارزش در معرض ریسک (VaR) و ریزش مورد انتظار (ES) استفاده از رویکرد ارزش فرین شرطی در بورس اوراق بهادار تهران. مجله تحقیقات مالی، 3(18)،437-460.
* لطفعلی پور، محمدرضا، نصرتی، مهدیه، قدیری مقدم، ابوالفضل، فیلسرایی، مهدی. (1396). اندازهگیری ارزش در معرض ریسک شرطی پرتفوی با روش FIGARCH-EVTدر بورس اوراق بهادار تهران. 8(31)، 281-295.
* Acerbi, C., & Tasche, D. (2002). Expected shortfall: a natural coherent alternative to value at risk. Economic notes, 31(2), 379-388.
* Ayusuk, A. and Sriboonchitta, S., (2016) Copula Based Volatility Models and Extreme Value Theory for Portfolio Simulation with an Application to Asian Stock Markets. In Causal Inference in Econometrics, 14(2), 279-293.
* Balkema, A. A., & De Haan, L. (1974). Residual life time at great age. The Annals of probability, 792-804.
* Chrétien, S., Coggins, F., & Trudel, Y. (2010). Performance of monthly multivariate filtered historical simulation value-at-risk. Journal of Risk Management in Financial Institutions, 3(3): 259-277.
* Christoffersen, P. F. (1998). “Evaluating interval forecasts”. International economic review, 841-862.
* Fisher, R. A., & Tippett, L. H. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceeding of Cambridge Philosophical Society, 24, 180-190.
* Gelper, S., Fried, R., & Croux, C. (2010). Robust forecasting with exponential and Holt–Winters smoothing. Journal of forecasting, 29(3), 285-300.
* Gencay, R., & Selcuk, F. (2004). Extreme value theory and Value-at-Risk: Relative performance in emerging markets. International Journal of Forecasting, 20(2), 287-303.
* Gilli, M. (2006). An application of extreme value theory for measuring financial risk. Computational Economics, 27(2-3), 207-228.
* Haan, L., Jansen, D. W., Koedijk, K., & de Vries, C. G. (1994). Safety first portfolio selection, extreme value theory and long run asset risks. In Extreme value theory and applications. Springer US, 471-487.
* Jansen, D. W., & De Vries, C. G. (1991). On the frequency of large stock returns: Putting booms and busts into perspective. The review of economics and statistics, 18-24.
* 15.Karmakar, M. (2017). Dependence structure and portfolio risk in Indian foreign exchange market: A GARCH-EVT-Copula approach. The Quarterly Review of Economics and Finance, 64, 275-291.
* Karmakar, M., & Paul, S. (2016). Intraday risk management in International stock markets: A conditional EVT approach. International Review of Financial Analysis, 44, 34-55.
* Kupiec, P. H. (1995). “Techniques for verifying the accuracy of risk measurement models”. The J. of Derivatives, 3(2).
* Lopez, J. A. (1999). Methods for evaluating value-at-risk estimates. Economic Review-Federal Reserve Bank of San Francisco, (2), 3.
* Messaoud, S. B., & Aloui, C. (2015). Measuring Risk of Portfolio: GARCH-Copula Model. Journal of Economic Integration, 172-205.
* Nortey, E. N., Asare, K., & Mettle, F. O. (2015). Extreme value modelling of Ghana stock exchange index. SpringerPlus, 4(1), 696.
* Singh, A. K., Allen, D. E., & Powell, R. J. (2011). Value at risk estimation using extreme value theory.
* Soltane, H. B., Karaa, A., & Bellalah, M. (2012). Conditional VaR Using GARCH-EVT Approach: Forecasting Volatility in Tunisian Financial Market. Journal of Computations & Modelling, 2(2), 95-115.
* Youssef, M., Belkacem, L., & Mokni, K. (2015). Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach. Energy Economics, 51, 99-110
_||_