Comparison of antecedents and consequences of financial behavior of momentum and random investors (mixed approach)
Subject Areas : Financial Knowledge of Securities AnalysisFatemeh Jafari 1 , Reza Aghajan Nashtaei 2 , Mohammad Hassan Gholizadeh 3
1 - PhD student of Financial engineering, Department of Management, Rasht Branch, Islamic Azad University, Rasht, Iran.
2 - Department of Business Management, Rasht Branch, Islamic Azad University, Rasht, Iran
3 - Department of Management, University of Guilan, Rasht, Iran
Keywords: Behavioral Finance, momentum investment, random investment, Mixed Method,
Abstract :
The main goal of this research is to present the behavioral model of momentum and random investors in the Iranian stock market and to estimate the factors affecting it. In this way, the antecedents and consequences of the financial behavior of momentum and random investors can be compared. Applied research has been done in a mixed method. Qualitative part of foundation data theory and quantitative part of structural equation technique. The data collected through semi-structured interviews and questionnaires, theoretical sampling continued until the categories were saturated, and interviews conducted with 24 Momentum and Random investors. Then, based on the theoretical systematic approach of Strauss and Corbin in the three main steps of open coding, central coding and selective coding, the behavioral model of both types of investors presented in terms of components, antecedents and consequences. In the following, research hypotheses formulated and tested in the quantitative part of the hypotheses. The results indicate that among the causal conditions of momentum investors' behavior, individual factors, psychological factors of the market, investor's feelings during the transaction and news and information have a significant effect. In addition, among the causal conditions of random investors' behavior, demographic factors, mental and emotional states and conditions, shareholders' expectations and news and information have a significant impact.
اسلامی بیدگلی، غلامرضا و حمیدرضا کردلوئی (1389). مالی رفتاری، مرحله گذر از مالی استاندارد تا نورو فایننس، مجله مهندسی مالی و مدیریت پرتفوی، شماره1، صص 36-20.
دارابی، رویا، چناریبوکت، حسن و ولیخانی، محمدجعفر (1394). ابعاد و رویکردهای نظریه مالی رفتاری، پژوهشگاه علوم انسانی و مطالعات فرهنگی، پرتال جامع علوم انسانی، صص25-1.
رهنمای رودپشتی، فریدون و زندیه، وحید (1391). مالی رفتاری و مالی عصبی (پارادایم نوین مالی) از تئوری تا عمل، انتشارات دانشگاه آزاد اسلامی، سازمان چاپ و انتشارات.
کبریایی، آتنا و دهقان، عبدالمجید (1399). ارزیابی عوامل تعیینکننده مومنتوم قیمت در بازار سهام، فصلنامه مهندسی مالی و مدیریت اوراق بهادار ، شماره چهل و سوم، صص 450-431.
Ahmed, B. (2019). The effect of investor sentiment on market reactions to financial earnings restatements: Lessons from the United States, Journal of Behavioral and Experimental Finance, PII: S2214-6350(19)30069-3
Birnberg, J. (2011). A proposal framework for behavioral accounting research .Behavioral research in accounting. Vo123. No.1.pp1-43.
Bakar, S. and Chui Yi, A. (2016). The Impact of Psychological Factors on Investors’ Decision Making in Malaysian Stock Market: A Case of Klang Valley and Pahang, Procedia Economics and Finance, 35, pp 319-328.
Bucciol, Aless andro & Zarri, Luca (2017). Do Personality traits influence Investors Portfolios? Journal of Behavioral and Experimental Economics, No.68, pp.1-12.
Choi, Jaehyung (2014). Physical approach to price momentum and its application to momentum strategy." Physica A: Statistical Mechanics and its Applications 415 (2014), pp. 61-72.
Fieger, J. (2017). Behavioral Finance and Its Impact on Investing, A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University, pp. 1-43.
Creswell JW, Clark VL. (2007) .Designing and conducting mixed methods research, Thousand Oaks, CA: Sage.
Liu, Xiaqun. Zhuang, Yaming. Li, Jinsheng (2020). A Model for Evolution of Investors Behavior in Stock Market Based on Reinforcement Learning in Network, wiley Hindawi Complexity journal, Article ID 3561538 , https://doi.org/10.1155/2020/3561538
Mahmood, T., Muhammad, R. Ayyub, M., Imran, S. & Naeem, Wasim Abbas (2020). The Behavioral Analysis and Financial Performance of Individual Investors at Pakistan Stock Exchange, International Journal of Economics and Financial Issues, https://doi.org/10.32479/ijefi.10112
Mokhtar, A. (2016). An empirical examination of the behavioral CAPM. Journal of Finance and Investment Analysis, 5 (3), pp. 15-57.
Sabir, S. A., Javed Shahbaz Alikhan, T. & Zahid Javed, M. (2021). Investment Behaviour of Individual Investors of Pakistan Stock Market with Moderating Role of Financial Literacy, Journal of Contemporary Issues in Business and Government Vol. 27, No. 2.
Silva, Ch., Miranda Tabak, B. & Ferreira, I. M. (2019). Modeling Investor Behavior Using Machine Learning: Mean-Reversion and Momentum Trading Strategies, Volume 2019, and Article ID 4325125, pp. 1-14.
Singh, J.E., Babshetti, V. & Shivaprasad, H.N. (2021). Efficient Market Hypothesis to Behavioral Finance: A Review of Rationality to Irrationality, Materials Today: Proceedings, pp 1-10.
Tauni, M. Z., Rao, Z. U. R., Fang, H., Mirza, S.S., memon, Z.A. & Jebran, K.H. (2017). Do Investors Big Five Personality traits influence the association between Information acquisition and stock trading behavior? China Finance Review International Emerald Publishing Limited 1398-2044.
Thomas, T. C. and Rajandran, G. (2012). BB&K Five- way model and Investment behavior of Individual Investors: Evidence from India". Economic and management, 6(1), pp.115-127.
Tanaka-Yamawaki, Mieko (2011). Cross Correlation of Intra-Day Stock Prices in Comparison to Random Matrix Theory, Intelligent Information Management, 2011, 3, pp.65-70 doi:10.4236/iim.2011.33008 Published Online May 2011 (http://www.SciRP.org/journal/iim).
Teplova, Tamara, & Evgeniya Mikova (2015). New evidence on determinants of price momentum in the Japanese stock market." Research in International Business and Finance 34 (2015), pp. 84-109.
Thomas, S. Goel a, M. & Agrawal, D. (2020). A framework for analyzing financial behavior using machine-learning classification of personality through handwriting
_||_